1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <time.h>
#include <stddef.h>
#include "libMems/dmSML/buffer.h"
#include <string.h>
// portably fills an int with reasonably random bits.
// one assumption is that MAX_RAND is bigger than 256.
static int BigRandom() {
static char firsttime = 1;
int i, result;
if( firsttime ) {
firsttime = 0;
srand( 0 );
//srand( time( NULL ) );
}
result = 0;
for( i = 0; i < sizeof( result ); i++ ) {
result <<= sizeof( result );
result ^= rand();
}
// the funny test here because if result == INT_MIN on a
// two's complement machine, -result *also* == INT_MIN.
return( result < 0 ? (-result < 0 ? 0 : -result) : result );
}
// Working Set support.
// returns resulting size of the entire structure.
int MakeWorkingSet( working_set_t * ws, offset_t goalsize, offset_t minrecs, offset_t maxrecs ) {
// wrap the memory allocation loop with an outer loop
// that will attempt smaller working set sizes if large ones fail to allocate
while( 1 ){
// we incrementally grow the working set to the desired size.
// however, we just compute the growth and how big the buffers will be,
// then we malloc one single large chunk of memory, and arrange things
// such that all of the buffer_ts are contiguous in one chunk, and
// all the actual data is contiguous after.
offset_t cursize = 0;
offset_t overhead = sizeof( ws->bufs[0] );
offset_t minsize = overhead + minrecs * sizeof( record_t );
offset_t maxsize = overhead + maxrecs * sizeof( record_t );
offset_t nbufs = 0; // number of real buffers pleged to the working set
offset_t maxbufs = 256; // the max number of buffers we track (this grows if necessary)
offset_t *buflist = malloc( sizeof( *buflist ) * maxbufs ); // grows when necessary
record_t *recordptr;
offset_t i;
// if we can't possibly do anything useful
if( goalsize < minsize || maxrecs < minrecs || !buflist ) {
if( buflist )
free( buflist );
return( 0 );
}
// just start allocating buffers until we can't anymore
while( goalsize - cursize >= maxsize ) {
offset_t randrecs = BigRandom() % (maxrecs - minrecs + 1) + minrecs;
if( nbufs == maxbufs ) {
// resize the array
maxbufs *= 2;
buflist = realloc( buflist, sizeof( *buflist ) * maxbufs );
}
buflist[nbufs++] = randrecs;
// update the number of bytes we've currently decided to allocate.
cursize += overhead + randrecs * sizeof( record_t );
}
// now we have nbufs buffers, and the number of records they should
// store is in the buflist list.
// allocate one big chunk of memory
printf( "allocating %llu bytes for working set (%llu bufs)\n", cursize, nbufs );
ws->bufs = malloc( cursize );
// if it failed to allocate try a smaller size
if( !ws->bufs ){
goalsize /= 2;
continue;
}
ws->size = cursize;
ws->nbufs = nbufs;
// clear it out
memset( ws->bufs, 0, cursize );
// Now fill in the pointers to the records for all the buffers.
// these all reside after the buffers in the working set.
// Something convenient from this scheme is that in order to free
// the working set when we're through, we just free ws->bufs.
// pointer to first set of records.
recordptr = (record_t *)( ((ptrdiff_t)ws->bufs) + (ws->nbufs * sizeof( ws->bufs[0] )) );
for( i = 0; i < nbufs; i++ ) {
ws->bufs[i].totalrecs = buflist[i];
ws->bufs[i].recs = recordptr;
recordptr += ws->bufs[i].totalrecs;
}
free( buflist );
return( cursize );
}
return 0;
}
// Working Set support.
// Reorganize the working set with a different distribution of buffers.
void ReorganizeWorkingSet( working_set_t * ws, offset_t minrecs, offset_t maxrecs ) {
// we incrementally grow the working set to the desired size.
// however, we just compute the growth and how big the buffers will be,
// then we malloc one single large chunk of memory, and arrange things
// such that all of the buffer_ts are contiguous in one chunk, and
// all the actual data is contiguous after.
offset_t goalsize = ws->size;
offset_t cursize = 0;
offset_t overhead = sizeof( ws->bufs[0] );
offset_t minsize = overhead + minrecs * sizeof( record_t );
offset_t maxsize = overhead + maxrecs * sizeof( record_t );
offset_t nbufs = 0; // number of real buffers pledged to the working set
offset_t maxbufs = 256; // the max number of buffers we're tracking (this grows if necessary)
offset_t *buflist = malloc( sizeof( *buflist ) * maxbufs ); // grows when necessary
offset_t leftovers;
record_t *recordptr;
offset_t i;
// if we can't possibly do anything useful
if( maxrecs < minrecs ) {
free( buflist );
return;
}
if( goalsize < minsize ) {
minsize = goalsize;
minrecs = (minsize-overhead) / sizeof( record_t );
}
// just start allocating buffers until we can't anymore
while( goalsize - cursize >= maxsize ) {
offset_t randrecs = BigRandom() % (maxrecs - minrecs + 1) + minrecs;
if( nbufs == maxbufs ) {
// resize the array
maxbufs *= 2;
buflist = realloc( buflist, sizeof( *buflist ) * maxbufs );
}
buflist[nbufs++] = randrecs;
// update the number of bytes we've currently decided to allocate.
cursize += overhead + randrecs * sizeof( record_t );
}
// clean up the last bit
if( goalsize - cursize > overhead ) {
leftovers = (goalsize - cursize - overhead) / sizeof( record_t );
if( leftovers ) {
if( nbufs == maxbufs ) {
// resize the array
maxbufs *= 2;
buflist = realloc( buflist, sizeof( *buflist ) * maxbufs );
}
buflist[nbufs++] = leftovers;
cursize += overhead + leftovers * sizeof( record_t );
}
}
// now we have nbufs buffers, and the number of records they should
// store is in the buflist list.
ws->nbufs = nbufs;
// clear it out
memset( ws->bufs, 0, cursize );
// Now fill in the pointers to the records for all the buffers.
// these all reside after the buffers in the working set.
// Something convenient from this scheme is that in order to free
// the working set when we're through, we just free ws->bufs.
// pointer to first set of records.
recordptr = (record_t *)( ((ptrdiff_t)ws->bufs) + (ws->nbufs * sizeof( ws->bufs[0] )) );
for( i = 0; i < nbufs; i++ ) {
ws->bufs[i].totalrecs = buflist[i];
ws->bufs[i].recs = recordptr;
recordptr += ws->bufs[i].totalrecs;
}
free( buflist );
return;
}
// this updates all the IO on the working set buffers, querying those that
// are not in OP_FINISHED or OP_NONE and putting those that finish into OP_FINISHED
void UpdateWSIOFinishedState( working_set_t * ws ) {
// gets rid of an indirection in the loop.
// this method (rather than using an index)
// (I also think it's cleaner)
buffer_t *b;
// simply walk all of them
for( b = ws->bufs; b - ws->bufs < ws->nbufs; b++ ) {
// real operation #s are whole numbers.
if( b->operation > OP_NONE ) {
//printf( "examining operation %d\n", b->operation );
if( aOperationComplete( b->file, b->operation ) ) {
//printf( "* Completed operation %d on device %x\n", b->operation, b->device );
b->operation = OP_FINISHED;
} else {
//printf( "operation %d INCOMPLETE IO\n", b->operation );
}
}
}
}
// buffer list manipulations
// returns argument
buffer_list_t * InitList( buffer_list_t * list ) {
list->head = NULL;
list->nitems = 0;
return( list );
}
void PushHead( buffer_list_t * list, buffer_t * item ) {
// one special case for empty list, because we can't
// dereference list->head until we assign to it.
if( list->head == NULL ) {
list->head = item;
list->nitems = 1;
list->head->next = list->head;
list->head->last = list->head;
return;
}
// other cases are easier, because no more null pointers.
item->last = list->head->last;
item->next = list->head;
list->head->last->next = item;
list->head->last = item;
list->head = item;
// we added an item.
list->nitems++;
}
void PushTail( buffer_list_t * list, buffer_t * item ) {
// this is exactly equivalent to doing a PushHead and
// then backing up the list head one.
// get the item in there
PushHead( list, item );
// back up the head.
list->head = list->head->last;
}
buffer_t * PopHead( buffer_list_t * list ) {
buffer_t *ret;
// just get rid of the head item and return it.
if( list->head == NULL ) {
return( NULL );
}
list->head->next->last = list->head->last;
list->head->last->next = list->head->next;
ret = list->head;
list->head = list->head->next;
ret->next = ret->last = NULL;
list->nitems--;
if( list->nitems == 0 ) {
list->head = NULL;
}
return( ret );
}
buffer_t * PopTail( buffer_list_t * list ) {
// just get rid of the tail item and return it.
if( list->head == NULL ) {
return( list->head );
}
// otherwise, a pop tail is equivalent to moving the
// head back one and popping head.
list->head = list->head->last;
return( PopHead( list ) );
}
// returns second argument
buffer_t * RemoveItem( buffer_list_t * list, buffer_t * item ) {
// FIXME: handle NULL cases in a reasonable way?
if( item == list->head ) {
return( PopHead( list ) );
}
item->next->last = item->last;
item->last->next = item->next;
item->next = item->last = NULL;
list->nitems--;
if( list->nitems == 0 ) {
list->head = NULL;
}
return( item );
}
int CompareKeys_qsort_wrapper( const void *r1, const void *r2 ) {
return( CompareKeys( (record_t *)r1, (record_t *)r2 ) );
}
int CompareKeys( const record_t *r1, const record_t *r2 ) {
return( COMPARE_KEYS( *r1, *r2 ) );
//return( memcmp( r1->key, r2->key, sizeof( r1->key ) ) );
}
// This *must* enforce a serialized order for reading and writing, lest
// we write sorted data out in the wrong order!
void UpdateDeviceIOExecuteState( working_set_t * ws, iodevice_t * dev ) {
// check to see if the device's IO job completed
if( !dev->buf || dev->state == DEV_FREE || dev->buf->operation == OP_FINISHED ) {
// find another job to take its place and execute it.
buffer_t *b;
buffer_t *found_buf = NULL;
dev->state = DEV_FREE;
dev->buf = NULL;
// simply walk all of them, find the operation on this device
// that has the lowest op number for its file. This is made "more fair"
// by picking the first operation that matches the device, then finding
// all other buffers that operate on the same file
for( b = ws->bufs; b - ws->bufs < ws->nbufs; b++ ) {
// is this one that should be executed next?
if( b->operation == OP_PENDING && b->device == dev ) {
if( !found_buf ) {
found_buf = b;
} else if( (b->file == found_buf->file) &&
(b->fileop < found_buf->fileop) ) {
found_buf = b;
}
}
/*
if( b->operation == OP_PENDING && b->device == dev ) {
dev->buf = b;
b->operation = b->file->mode == A_READ
? aRead( b->recs, sizeof( b->recs[0] ), b->numrecs, b->file )
: aWrite( b->recs, sizeof( b->recs[0] ), b->numrecs, b->file );
dev->state = DEV_BUSY;
//printf( "* Created operation %d on device %x\n", b->operation, b->device );
// found one, so quit.
break;
}
*/
}
if( found_buf ) {
dev->buf = found_buf;
found_buf->operation = found_buf->file->mode == A_READ
? aRead( found_buf->recs, 1, found_buf->io_size, found_buf->file, found_buf->io_pos )
: aWrite( found_buf->recs, 1, found_buf->io_size, found_buf->file, found_buf->io_pos );
dev->state = DEV_BUSY;
}
}
}
// read and write to/from disk.
void ReadBuffer( buffer_t * buffer, offset_t num_recs, iodevice_t * dev ) {
buffer->io_size = num_recs * sizeof( record_t );
buffer->numrecs = num_recs;
buffer->device = dev;
buffer->fileop = buffer->file->op++;
buffer->io_pos = CURRENT_POS;
if( buffer->operation != OP_NONE ) {
printf( "weird!\n" );
} else {
buffer->operation = OP_PENDING;
}
//printf( "* Initiated (pending) operation on %x\n", dev );
}
void WriteBuffer( buffer_t * buffer, offset_t num_recs, iodevice_t * dev ) {
// exactly the same as a read -- the operation is just scheduled.
// the exact nature (read or write) is determined by the mode
// of the opened file at the time operation is in fact
// executed.
ReadBuffer( buffer, num_recs, dev );
}
|