1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libMems/dmSML/sorting.h"
#include "math.h"
#include <string.h>
#ifndef USE_QSORT_ONLY
// Other helper functions in this file:
void RadixHistogram( sort_buf_t* sortbuf );
void RadixCopy( sort_buf_t* sortbuf );
void QSortPointers( sort_buf_t* sortbuf );
void QBrute( record_t* a[], int lo, int hi );
void QSort( record_t* a[], int lo0, int hi0 );
void CopySortedData ( sort_buf_t* sortbuf );
void InitRadixSort( sort_buf_t* sortbuf, buffer_t* scratch_buffer )
{
// allocate the sortbuf struct
unsigned int bin_divisor;
unsigned int i, keyval = 0;
// allocate the histogram memory
sortbuf->histogram_size = 1;
sortbuf->histogram_size <<= RADIX_BITS;
sortbuf->histogram = (unsigned*) malloc( sortbuf->histogram_size * sizeof(unsigned) );
sortbuf->cur_ptr_offsets = (unsigned*) malloc( sortbuf->histogram_size * sizeof(unsigned) );
// init histogram to 0's
memset( sortbuf->histogram, 0, sortbuf->histogram_size * sizeof(unsigned) );
// calculate the base number and divisor
bin_divisor = (unsigned)16777216 / (unsigned)NumBins;
// need ceiling of this
bin_divisor += (unsigned)16777216 % (unsigned)NumBins ? 1 : 0;
for( i = 0; i < 3; i++ ) {
keyval <<= 8;
keyval += sortbuf->buf->recs[0].key[i];
}
sortbuf->base_number = (keyval / bin_divisor) * bin_divisor;
sortbuf->divisor = (unsigned)bin_divisor / (unsigned)sortbuf->histogram_size;
sortbuf->divisor += (unsigned)bin_divisor % (unsigned)sortbuf->histogram_size ? 1 : 0;
// init some values
sortbuf->cur_position = 0;
sortbuf->sort_state = CalculateHistogram;
sortbuf->radix_tmp = scratch_buffer;
// allocate ptr buffer memory
sortbuf->rec_ptrs = (record_t**) malloc( sortbuf->buf->numrecs * sizeof(record_t*) );
}
void RadixSort( sort_buf_t* sortbuf )
{
switch(sortbuf->sort_state){
case CalculateHistogram:
RadixHistogram( sortbuf );
break;
case CopyPointers:
RadixCopy( sortbuf );
break;
case QsortPointers:
QSortPointers( sortbuf );
break;
case CopyData:
CopySortedData( sortbuf );
break;
default:
printf("Error in sort_state\n");
}
}
void RadixHistogram( sort_buf_t* sortbuf ){
unsigned data_bucket;
unsigned maxI;
unsigned histI;
unsigned cur_offset;
unsigned tmp;
record_t* cur_rec;
maxI = sortbuf->cur_position + HISTOGRAM_CHUNK_SIZE;
maxI = maxI < (unsigned)sortbuf->buf->numrecs ? maxI : (unsigned)sortbuf->buf->numrecs;
// do a complete pass over the data set, summing the number of entries
// in each bucket
for(; sortbuf->cur_position < maxI; sortbuf->cur_position++){
cur_rec = &(sortbuf->buf->recs[ sortbuf->cur_position ]);
data_bucket = cur_rec->key[0];
data_bucket <<= 8;
data_bucket += cur_rec->key[1];
data_bucket <<= 8;
data_bucket += cur_rec->key[2];
data_bucket -= sortbuf->base_number;
data_bucket /= sortbuf->divisor;
sortbuf->histogram[data_bucket]++;
}
// check if we've completed this stage
if( sortbuf->cur_position == (unsigned)sortbuf->buf->numrecs ){
// do a pass over the histogram converting the counts to offsets
cur_offset = 0;
for( histI = 0; histI < sortbuf->histogram_size; histI++){
tmp = sortbuf->histogram[ histI ];
sortbuf->histogram[ histI ] = cur_offset;
cur_offset += tmp;
}
// copy pointers is the next stage
sortbuf->sort_state = CopyPointers;
sortbuf->cur_position = 0;
}
}
void RadixCopy( sort_buf_t* sortbuf ){
unsigned data_bucket;
unsigned maxI;
record_t* cur_rec;
maxI = sortbuf->cur_position + PTR_COPY_CHUNK_SIZE;
maxI = maxI < (unsigned)sortbuf->buf->numrecs ? maxI : (unsigned)sortbuf->buf->numrecs;
// if its the first time through then initialize cur_ptr_offsets
if(sortbuf->cur_position == 0 )
memcpy(sortbuf->cur_ptr_offsets, sortbuf->histogram, sortbuf->histogram_size * sizeof(unsigned) );
// do a complete pass over the data set, setting an entry in the pointer
// array for the correct bucket
for(; sortbuf->cur_position < maxI; sortbuf->cur_position++){
cur_rec = &(sortbuf->buf->recs[ sortbuf->cur_position ]);
data_bucket = cur_rec->key[0];
data_bucket <<= 8;
data_bucket += cur_rec->key[1];
data_bucket <<= 8;
data_bucket += cur_rec->key[2];
data_bucket -= sortbuf->base_number;
data_bucket /= sortbuf->divisor;
sortbuf->rec_ptrs[ sortbuf->cur_ptr_offsets[ data_bucket ] ] = cur_rec;
sortbuf->cur_ptr_offsets[ data_bucket ]++;
}
// check if we've completed this stage
if( sortbuf->cur_position == (unsigned)sortbuf->buf->numrecs ){
sortbuf->sort_state = QsortPointers;
sortbuf->cur_position = 0;
}
}
void QSortPointers( sort_buf_t* sortbuf )
{
unsigned binI = sortbuf->cur_position;
unsigned maxI = binI + SORT_BINS_SIZE;
maxI = maxI < sortbuf->histogram_size ? maxI : sortbuf->histogram_size - 1;
for(; binI < maxI; binI++){
if( sortbuf->histogram[binI + 1] - sortbuf->histogram[binI] > 1 )
QSort( sortbuf->rec_ptrs, sortbuf->histogram[binI], sortbuf->histogram[binI + 1] - 1 );
}
sortbuf->cur_position = binI;
if( binI == sortbuf->histogram_size - 1 ){
if( (sortbuf->buf->numrecs - 1) - sortbuf->histogram[binI] > 1 )
QSort( sortbuf->rec_ptrs, sortbuf->histogram[binI], sortbuf->buf->numrecs - 1 );
sortbuf->sort_state = CopyData;
sortbuf->cur_position = 0;
}
}
void CopySortedData ( sort_buf_t* sortbuf ){
unsigned recordI = sortbuf->cur_position;
unsigned maxI = recordI + COPY_CHUNK_SIZE;
record_t* tmp;
// set the processing limit for this time through.
maxI = maxI < (unsigned)sortbuf->buf->numrecs ? maxI : (unsigned)sortbuf->buf->numrecs;
for(; recordI < maxI; recordI++ )
sortbuf->radix_tmp->recs[recordI] = *(sortbuf->rec_ptrs[recordI]);
sortbuf->cur_position = recordI;
// check if we're all done with sorting
if(recordI == (unsigned)sortbuf->buf->numrecs){
// swap the pointers
tmp = sortbuf->radix_tmp->recs;
sortbuf->radix_tmp->recs = sortbuf->buf->recs;
sortbuf->buf->recs = tmp;
// set our state to completion
sortbuf->state = WRITE_RESTRUCTURE;
// release memory
free( sortbuf->rec_ptrs );
free( sortbuf->histogram );
free( sortbuf->cur_ptr_offsets );
}
}
// QBrute sorts less than 3 elements at a time
void QBrute( record_t* a[], int lo, int hi ) {
if ((hi-lo) == 1) {
if( CompareKeyPtrs( a[hi], a[lo] ) < 0 ) {
record_t* T = a[lo];
a[lo] = a[hi];
a[hi] = T;
}
}else
if ((hi-lo) == 2) {
int pmin = CompareKeyPtrs( a[lo], a[lo+1] ) < 0 ? lo : lo+1;
pmin = CompareKeyPtrs( a[pmin], a[lo+2] ) < 0 ? pmin : lo+2;
if (pmin != lo) {
record_t* T = a[lo];
a[lo] = a[pmin];
a[pmin] = T;
}
QBrute(a, lo+1, hi);
}else
if ((hi-lo) == 3) {
int pmin, pmax;
pmin = CompareKeyPtrs( a[lo], a[lo+1] ) < 0 ? lo : lo+1;
pmin = CompareKeyPtrs( a[pmin], a[lo+2] ) < 0 ? pmin : lo+2;
pmin = CompareKeyPtrs( a[pmin], a[lo+3] ) < 0 ? pmin : lo+3;
if (pmin != lo) {
record_t* T = a[lo];
a[lo] = a[pmin];
a[pmin] = T;
}
pmax = CompareKeyPtrs( a[hi], a[hi-1] ) > 0 ? hi : hi-1;
pmax = CompareKeyPtrs( a[pmax], a[hi-2] ) > 0 ? pmax : hi-2;
if (pmax != hi) {
record_t* T = a[hi];
a[hi] = a[pmax];
a[pmax] = T;
}
QBrute(a, lo+1, hi-1);
}
}
void QSort( record_t* a[], int lo0, int hi0 ) {
int lo = lo0;
int hi = hi0;
record_t* pivot;
if ((hi-lo) <= 3) {
QBrute(a, lo, hi);
return;
}
/*
* Pick a pivot and move it out of the way
*/
pivot = a[(lo + hi) / 2];
a[(lo + hi) / 2] = a[hi];
a[hi] = pivot;
while( lo < hi ) {
/*
* Search forward from a[lo] until an element is found that
* is greater than the pivot or lo >= hi
*/
//while( a[lo] <= pivot && lo < hi ) {
while( (CompareKeyPtrs( a[lo], pivot ) <= 0) && lo < hi ) {
lo++;
}
/*
* Search backward from a[hi] until element is found that
* is less than the pivot, or hi <= lo
*/
//while (pivot <= a[hi] && lo < hi ) {
while( (CompareKeyPtrs( pivot, a[hi] ) <= 0) && lo < hi ) {
hi--;
}
/*
* Swap elements a[lo] and a[hi]
*/
if( lo < hi ) {
record_t* T = a[lo];
a[lo] = a[hi];
a[hi] = T;
}
}
/*
* Put the median in the "center" of the list
*/
a[hi0] = a[hi];
a[hi] = pivot;
/*
* Recursive calls, elements a[lo0] to a[lo-1] are less than or
* equal to pivot, elements a[hi+1] to a[hi0] are greater than
* pivot.
*/
QSort( a, lo0, lo-1 );
QSort( a, hi+1, hi0 );
}
#endif /* !USE_QSORT_ONLY */
|