1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
! libMeshb 7 basic example:
! read a Q2 quad mesh while using the automatic HO reordering feature,
! split it into P2 triangles and write the result back using fast block transfer
program test_libmeshb_HO_f90
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
use iso_fortran_env
use libmeshb7
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
implicit none
integer(int64) :: InpMsh, OutMsh, m(1)
character(80) :: InpFile
character(80) :: OutFile
character(80) :: SolFile
integer(int32) :: i,iTria
integer(int32) :: GmfCell,GmfOrd
integer(int32) :: NmbVer,NmbQad,NmbTri,ver,dim,res
real(real64) , pointer :: VerTab(:,:)
integer(int32), pointer :: VerRef( :)
integer(int32), pointer :: QadTab(:,:),QadRef( :)
integer(int32), pointer :: TriTab(:,:),TriRef( :)
integer(int32) :: t(1),d,ho,s
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
print '(/"test_libmeshb_HO_f90")'
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
InpFile='../sample_meshes/quad_q2.mesh'
OutFile='./tri_p2.mesh'
SolFile='./tri_p2.sol'
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Open the quadrilateral mesh file for reading
print '(/"Input Mesh File : ",a )',trim(InpFile)
! Open the mesh file and check the version and dimension
InpMsh=GmfOpenMeshF90(name=trim(InpFile),GmfKey=GmfRead,ver=ver,dim=dim)
print '( "Input Mesh Idx : ",i0)',InpMsh
print '( "Input Mesh ver : ",i0)',ver
print '( "Input Mesh dim : ",i0)',dim
if( InpMsh==0 ) stop ' InpMsh = 0'
if( ver<=1 ) stop ' version <= 1'
if( dim/=3 ) stop ' dimension <> 3'
! Read the vertices using a vector of 3 consecutive doubles to store the coordinates
NmbVer = GmfstatkwdF90(unit=InpMsh, GmfKey=GmfVertices)
print '( "Input Mesh NmbVer: ",i0)', NmbVer
allocate(VerTab(1:3,1:NmbVer))
allocate(VerRef( 1:NmbVer))
res=GmfGetBlockF90( &
& unit=InpMsh ,&
& GmfKey=GmfVertices ,&
& ad0=1 ,&
& ad1=NmbVer ,&
& Tab=VerTab(:,1:NmbVer) ,&
& Ref=VerRef( 1:NmbVer) )
do i=1,10
print '(3x,"ver",i6," xyz:",3(f12.5,1x)," ref: ",i0)',i,VerTab(1:3,i),VerRef(i)
enddo
! Read GmfQuadrilateralsQ2
GmfCell=GmfQuadrilateralsQ2 ! <=
GmfOrd =GmfQuadrilateralsQ2Ordering ! <=
NmbQad=GmfstatkwdF90(unit=InpMsh,GmfKey=GmfCell)
print '( "Input Mesh NmbQad: ",i0)', NmbQad
allocate(QadTab(1:9,1:NmbQad))
allocate(QadRef( 1:NmbQad))
if( .not. GmfstatkwdF90(unit=InpMsh,GmfKey=GmfOrd)==0 )then
print '("Input Mesh Reordering HO Nodes")'
block
integer :: BasTab(1:2,1:9)
integer :: OrdTab(1:2,1:9)
integer :: ord
integer :: nNode
!> 04 07 03
!> 08 09 06
!> 01 05 02
BasTab(1:2,01)=[0,0]
BasTab(1:2,02)=[2,0]
BasTab(1:2,03)=[2,2]
BasTab(1:2,04)=[0,2]
BasTab(1:2,05)=[1,0]
BasTab(1:2,06)=[2,1]
BasTab(1:2,07)=[1,2]
BasTab(1:2,08)=[0,1]
BasTab(1:2,09)=[1,1]
print '("Input Mesh Requested Order")'
do i=1,size(BasTab,2)
print '(3x,"uv(",i2.2,")=",2(i2,1x))',i,BasTab(1:2,i)
enddo
!> Q2 -> ord=2
ord=2
nNode=(ord+1)*(ord+1) ! <=
res=GmfGetBlockF90( &
& unit=InpMsh ,&
& GmfKey=GmfOrd ,&
& ad0=1 ,&
& ad1=nNode ,&
& Tab=OrdTab(:,1:nNode) )
print '("Input Mesh Order")'
do i=1,size(OrdTab,2)
print '(3x,"uv(",i2.2,")=",2(i2,1x))',i,OrdTab(1:2,i)
enddo
res=GmfSetHONodesOrderingF90(unit=InpMsh,GmfKey=GmfCell,BasTab=BasTab,OrdTab=OrdTab)
end block
endif
! Read the quads using one single vector of 5 consecutive integers
res=GmfGetBlockF90( &
& unit=InpMsh ,&
& GmfKey=GmfQuadrilateralsQ2,&
& ad0=1 ,&
& ad1=NmbQad ,&
& Tab=QadTab(:,1:) ,&
& Ref=QadRef( 1:) )
! Close the quadrilateral mesh
print '("Input Mesh Close : ",a)',trim(InpFile)
print '("Input Mesh")'
do i=1,10 !NmbQad
print '(3x,"qad",i6," nd:",9(i6,1x)," ref: ",i0)',i,QadTab(1:9,i),QadRef(i)
enddo
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Convert the quad Q2 mesh into a triangular P2 one
! Allocate TriTab and TriRef
NmbTri=2*NmbQad
allocate(TriTab(1:6,1:NmbTri))
allocate(TriRef( 1:NmbTri))
!> 04 07 03 03 04 07 03
!> 08 09 06 => 09 06 + 08 09
!> 01 05 02 01 05 02 01
!> 03
!> 06 05
!> 01 04 02
do i=1,NmbQad
iTria=2*i-1
TriTab(1,iTria) = QadTab(1,i)
TriTab(2,iTria) = QadTab(2,i)
TriTab(3,iTria) = QadTab(3,i)
TriTab(4,iTria) = QadTab(5,i)
TriTab(5,iTria) = QadTab(6,i)
TriTab(6,iTria) = QadTab(9,i)
TriRef( iTria) = QadRef( i)
iTria=2*i
TriTab(1,iTria) = QadTab(1,i)
TriTab(2,iTria) = QadTab(3,i)
TriTab(3,iTria) = QadTab(4,i)
TriTab(4,iTria) = QadTab(9,i)
TriTab(5,iTria) = QadTab(7,i)
TriTab(6,iTria) = QadTab(8,i)
TriRef( iTria) = QadRef( i)
enddo
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Write a triangular mesh
print '(/"Output Mesh File : ",a )',trim(OutFile)
print '("Output Mesh")'
do i=1,10
print '(3x,"tri",i6," nd:",6(i6,1x)," ref: ",i0)',i,TriTab(1:6,i),TriRef(i)
enddo
! Open the mesh file and check the version and dimension
OutMsh=GmfOpenMeshF90(name=trim(OutFile),GmfKey=GmfWrite,ver=ver,dim=dim)
print '( "Output Mesh Idx : ",i0)',InpMsh
print '( "Output Mesh ver : ",i0)',ver
print '( "Output Mesh dim : ",i0)',dim
if( OutMsh==0 ) STOP ' OutMsh = 0'
! Set the number of vertices
res=GmfSetKwdF90(unit=OutMsh, GmfKey=GmfVertices, Nmb=NmbVer)
print '( "Output Mesh NmbVer: ",i0)', NmbVer
! Write them down using separate pointers for each scalar entry
res=GmfSetBlockF90( &
& unit=OutMsh ,&
& GmfKey=GmfVertices ,&
& ad0=1 ,&
& ad1=NmbVer ,&
& Tab=VerTab(:,1:NmbVer),&
& Ref=VerRef( 1:NmbVer) )
! Write the triangles using 4 independant set of arguments
! for each scalar entry: node1, node2, node3 and reference
res=GmfSetKwdF90(unit=OutMsh, GmfKey=GmfTrianglesP2, Nmb=NmbTri)
print '( "Output Mesh NmbTri: ",i0)', NmbTri
res=GmfSetBlockF90( &
& unit=OutMsh ,&
& GmfKey=GmfTrianglesP2 ,&
& ad0=1 ,&
& ad1=NmbTri ,&
& Tab=TriTab(:,1:NmbTri),&
& Ref=TriRef( 1:NmbVer) )
! Don't forget to close the file
res=GmfCloseMeshF90(unit=OutMsh)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!> Cleanning Memory
deallocate(VerTab,VerRef)
deallocate(QadTab,QadRef)
deallocate(TriTab,TriRef)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
print '(/"control:"/"vizir4 -in ",a/)',trim(OutFile)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
end program test_libmeshb_HO_f90
|