1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
! libMeshb 7.79 example: transform a quadrilateral mesh into a triangular one
! using fast block transfer
program test_libmeshb_block_f90
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
use iso_fortran_env
use libmeshb7
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
implicit none
integer(int64) :: InpMsh, OutMsh, OutSol
character(80) :: InpFile
character(80) :: OutFile
character(80) :: SolFile
integer :: i
integer :: NmbVer,NmbQad,NmbTri,ver,dim,res
real(real64) , pointer :: VerTab(:,:)
integer , pointer :: VerRef( :)
integer , pointer :: QadTab(:,:),QadRef( :)
integer , pointer :: TriTab(:,:),TriRef( :)
integer(int32) :: NmbField,ho,s,d
integer(int32), pointer :: fields(:)
character(32) , pointer :: fieldsName(:)=>null()
real(real64) , pointer :: solTab(:,:)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
print '(/"test_libmeshb_block_f90")'
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
InpFile='../sample_meshes/quad.mesh'
OutFile='./tri.meshb'
SolFile='./tri.solb'
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Open the quadrilateral mesh file for reading
print '(/"Input Mesh Open : ",a )',trim(InpFile)
! Open the mesh file and check the version and dimension
InpMsh=GmfOpenMeshF90(name=trim(InpFile),GmfKey=GmfRead,ver=ver,dim=dim)
print '( "Input Mesh Idx : ",i0)',InpMsh
print '( "Input Mesh ver : ",i0)',ver
print '( "Input Mesh dim : ",i0)',dim
! Allocate VerRef
NmbVer = GmfstatkwdF90(unit=InpMsh, GmfKey=GmfVertices)
print '( "Input Mesh NmbVer : ",i0)', NmbVer
allocate(VerTab(1:3,1:NmbVer))
allocate(VerRef( 1:NmbVer))
! Read the vertices using a vector of 3 consecutive doubles to store the coordinates
res=GmfGetBlockF90( &
& unit=InpMsh ,&
& GmfKey=GmfVertices ,&
& ad0=1 ,&
& ad1=NmbVer ,&
& Tab=VerTab(:,1:NmbVer) ,&
& Ref=VerRef( 1:NmbVer) )
do i=1,10
print '(3x,"ver",i6," xyz:",3(f12.5,1x)," ref: ",i0)',i,VerTab(1:3,i),VerRef(i)
enddo
! Allocate QadTab
NmbQad=GmfstatkwdF90(unit=InpMsh, GmfKey=GmfQuadrilaterals)
print '( "Input Mesh NmbQad : ",i0)', NmbQad
allocate(QadTab(1:4,1:NmbQad))
allocate(QadRef( 1:NmbQad))
! Read the quads using one single vector of 4 consecutive integers
res=GmfGetBlockF90( &
& unit=InpMsh ,&
& GmfKey=GmfQuadrilaterals,&
& ad0=1 ,&
& ad1=NmbQad ,&
& Tab=QadTab(:,1:) ,&
& Ref=QadRef( 1:) )
do i=1,10
print '(3x,"qad",i6," nd:",4(i6,1x)," ref: ",i0)',i,QadTab(1:4,i),QadRef(i)
enddo
!!> Lecture par tableau 1D sans recopie (interface à écrire en indiquand le stride)
!block
! use iso_c_binding, only: c_loc,c_f_pointer
! integer , pointer :: nodes(:)
!
! call c_f_pointer(cptr=c_loc(QadTab), fptr=nodes, shape=[4*NmbQad]) !> binding QadTab(:,:) and nodes(:)
!
! res=GmfGetElements( &
! & InpMsh ,&
! & GmfQuadrilaterals ,&
! & 1 ,&
! & NmbQad ,&
! & 0, m ,&
! & nodes( 1), nodes(4*NmbQad-3),&
! & QadRef( 1), QadRef(NmbQad) )
!end block
! Close the quadrilateral mesh
res=GmfCloseMeshF90(unit=InpMsh)
print '("Input Mesh Close : ",a)',trim(InpFile)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Allocate TriTab and TriRef
NmbTri=2*NmbQad
allocate(TriTab(1:3,1:NmbTri))
allocate(TriRef( 1:NmbTri))
! Convert the quad mesh into a triangular one
do i=1,NmbTri
if(mod(i,2) .EQ. 1) then
TriTab(1,i) = QadTab(1,(i+1)/2)
TriTab(2,i) = QadTab(2,(i+1)/2)
TriTab(3,i) = QadTab(3,(i+1)/2)
TriRef( i) = QadRef( (i+1)/2)
else
TriTab(1,i) = QadTab(1,(i+1)/2)
TriTab(2,i) = QadTab(3,(i+1)/2)
TriTab(3,i) = QadTab(4,(i+1)/2)
TriRef( i) = QadRef( (i+1)/2)
endif
end do
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Write a triangular mesh
print '(/"Output Mesh Open : ",a )',trim(OutFile)
OutMsh=GmfOpenMeshF90(name=trim(OutFile),GmfKey=GmfWrite,ver=ver,dim=dim)
print '( "Output Mesh Idx : ",i0)',InpMsh
print '( "Output Mesh ver : ",i0)',ver
print '( "Output Mesh dim : ",i0)',dim
if(OutMsh==0) STOP ' OutMsh = 0'
! Set the number of vertices
res=GmfSetKwdF90(unit=OutMsh, GmfKey=GmfVertices, Nmb=NmbVer)
print '( "Output Mesh NmbVer : ",i0)', NmbVer
! Write them down using separate pointers for each scalar entry
res=GmfSetBlockF90( &
& unit=OutMsh ,&
& GmfKey=GmfVertices ,&
& ad0=1 ,&
& ad1=NmbVer ,&
& Tab=VerTab(:,1:NmbVer),&
& Ref=VerRef( 1:NmbVer) )
! Write the triangles using 4 independant set of arguments
! for each scalar entry: node1, node2, node3 and reference
res=GmfSetKwdF90(unit=OutMsh, GmfKey=GmfTriangles, Nmb=NmbTri)
print '( "Output Mesh NmbTri : ",i0)', NmbTri
res=GmfSetBlockF90( &
& unit=OutMsh ,&
& GmfKey=GmfTriangles ,&
& ad0=1 ,&
& ad1=NmbTri ,&
& Tab=TriTab(:,1:NmbTri),&
& Ref=TriRef( 1:NmbVer) )
!!> Ecriture par tableau 1D sans recopie (interface fortran à écrire)
!block
! use iso_c_binding, only: c_loc,c_f_pointer
! integer , pointer :: nodes(:)
!
! print '(/"binding TriTab(:,:) and nodes(:)")'
!
! call c_f_pointer(cptr=c_loc(TriTab), fptr=nodes, shape=[3*NmbTri]) !> binding TriTab(:,:) and nodes(:)
!
! print '(/"Triangle: ",i6)',1
! print '( "TriTab:",3(i6,1x) )',TriTab(1,1),TriTab(2,1),TriTab(3,1)
! print '( "nodes: ",3(i6,1x)/)',nodes(1),nodes(2),nodes(3)
! print '(/"Triangle: ",i6)',NmbTri
! print '( "TriTab:",3(i6,1x) )',TriTab(1,NmbTri),TriTab(2,NmbTri),TriTab(3,NmbTri)
! print '( "nodes: ",3(i6,1x)/)',nodes(3*NmbTri-2),nodes(3*NmbTri-1),nodes(3*NmbTri)
!
! res=GmfSetElements( &
! & InpMsh ,&
! & GmfTriangles ,&
! & 1 ,&
! & NmbTri ,&
! ! 0, m ,&
! & 0, c_null_ptr ,&
! & nodes( 1), nodes(3*NmbTri-2),&
! & TriRef( 1), TriRef(NmbTri) )
!
!end block
! Don't forget to close the file
res=GmfCloseMeshF90(unit=OutMsh)
print '("Output Mesh Close : ",a)',trim(OutFile)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Create a solution file
print '(/"Output Solu Open : ",a )',trim(SolFile)
OutSol=GmfOpenMeshF90(name=trim(SolFile),GmfKey=GmfWrite,ver=ver,dim=dim)
print '( "Output Solu Idx : ",i0)',OutSol
print '( "Output Solu ver : ",i0)',ver
print '( "Output Solu dim : ",i0)',dim
if( OutSol==0 ) STOP ' OutSol = 0'
! Set the solution kinds
NmbField=3
allocate( fields (1:NmbField))
allocate( fieldsName(1:NmbField))
fields(1:NmbField) = [GmfSca,GmfVec,GmfSca]
fieldsName(1:NmbField)=['sca_1','vec_1','sca_2']
!nomDesChamps : block
! integer :: iField,nChar
! character(:), pointer :: fieldName=>null()
! res=GmfSetKwdF90(unit=OutSol, GmfKey=GmfReferenceStrings, Nmb=NmbField)
! do iField=1,NmbField
! nChar=len_trim(fieldsName(iField)) ! print '("nChar: ",i0)',nChar
! allocate(character(len=nChar+3) :: fieldName)
! write(fieldName,'(a,1x,i0,a)')trim(fieldsName(iField)),iField,C_NULL_CHAR
! print '("fieldName: ",a)',fieldName
!
! !ress=GmfSetLin(unit=OutSol, GmfKey=GmfReferenceStrings, GmfSolAtVertices, 1, fieldName)
!
! deallocate(fieldName)
! enddo
!end block nomDesChamps
allocate(solTab(1:5,NmbVer)) ! 1+ dim+ 1
print '( "Output Solu NmbVer : ",i0)',NmbVer
print '( "Output Solu nFields : ",i0)',NmbField
print '( "Output Solu fields : ", *(i0,1x))',fields(1:NmbField)
! Set the number of solutions (one per vertex)
res=GmfSetKwdF90(unit=OutSol, GmfKey=GmfSolAtVertices, Nmb=NmbVer, d=NmbField, t=fields(1:NmbField), s=0, ho=ho)
! Compute the dummy solution fields
do i=1,NmbVer
solTab( 1,i)=VerTab(1,i)
solTab(2:4,i)=[VerTab(1,i),VerTab(2,i),0d0]
solTab( 5,i)=VerTab(2,i)
enddo
res=GmfSetBlockF90( &
& unit=OutMsh ,&
& GmfKey=GmfSolAtVertices ,&
& ad0=1 ,&
& ad1=NmbVer ,&
& Tab=solTab(:,1:NmbVer) )
! Don't forget to close the file
res=GmfCloseMeshF90(unit=OutSol)
print '("Output Solu Close : ",a)',trim(SolFile)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!> Cleanning Memory
deallocate(VerTab,VerRef)
deallocate(QadTab,QadRef)
deallocate(TriTab,TriRef)
deallocate(solTab)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
print '(/"Constrol"/"vizir4 -in ",a," -sol ",a,/)',trim(OutFile),trim(SolFile)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
end program test_libmeshb_block_f90
|