File: test_libmeshb_block.f90

package info (click to toggle)
libmeshb 7.80-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,848 kB
  • sloc: ansic: 12,810; f90: 1,146; fortran: 406; makefile: 218
file content (274 lines) | stat: -rw-r--r-- 9,496 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
! libMeshb 7.79 example: transform a quadrilateral mesh into a triangular one
! using fast block transfer

program test_libmeshb_block_f90
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  use iso_fortran_env
  use libmeshb7
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  implicit none
  integer(int64)          :: InpMsh, OutMsh, OutSol
  character(80)           :: InpFile
  character(80)           :: OutFile
  character(80)           :: SolFile
  integer                 :: i
  integer                 :: NmbVer,NmbQad,NmbTri,ver,dim,res
  real(real64)  , pointer :: VerTab(:,:)
  integer       , pointer :: VerRef(  :)
  integer       , pointer :: QadTab(:,:),QadRef(  :)
  integer       , pointer :: TriTab(:,:),TriRef(  :)
  integer(int32)          :: NmbField,ho,s,d
  integer(int32), pointer :: fields(:)
  character(32) , pointer :: fieldsName(:)=>null()
  real(real64)  , pointer :: solTab(:,:)
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  print '(/"test_libmeshb_block_f90")'
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  InpFile='../sample_meshes/quad.mesh'
  OutFile='./tri.meshb'
  SolFile='./tri.solb'
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  ! Open the quadrilateral mesh file for reading
  print '(/"Input  Mesh Open    : ",a )',trim(InpFile)
  
  ! Open the mesh file and check the version and dimension
  InpMsh=GmfOpenMeshF90(name=trim(InpFile),GmfKey=GmfRead,ver=ver,dim=dim)
  
  print '( "Input  Mesh Idx     : ",i0)',InpMsh
  print '( "Input  Mesh ver     : ",i0)',ver
  print '( "Input  Mesh dim     : ",i0)',dim
  
  ! Allocate VerRef
  NmbVer = GmfstatkwdF90(unit=InpMsh, GmfKey=GmfVertices)
  print '( "Input  Mesh NmbVer  : ",i0)', NmbVer
  allocate(VerTab(1:3,1:NmbVer))
  allocate(VerRef(    1:NmbVer))
  
  ! Read the vertices using a vector of 3 consecutive doubles to store the coordinates  
  res=GmfGetBlockF90(         &
  &   unit=InpMsh            ,&
  &   GmfKey=GmfVertices     ,&
  &   ad0=1                  ,&
  &   ad1=NmbVer             ,&
  &   Tab=VerTab(:,1:NmbVer) ,&
  &   Ref=VerRef(  1:NmbVer)  )
  
  do i=1,10
    print '(3x,"ver",i6," xyz:",3(f12.5,1x)," ref: ",i0)',i,VerTab(1:3,i),VerRef(i)
  enddo
  
  ! Allocate QadTab
  NmbQad=GmfstatkwdF90(unit=InpMsh, GmfKey=GmfQuadrilaterals)
  print '( "Input  Mesh NmbQad  : ",i0)', NmbQad
  allocate(QadTab(1:4,1:NmbQad))
  allocate(QadRef(    1:NmbQad))  
  
  ! Read the quads using one single vector of 4 consecutive integers  
  res=GmfGetBlockF90(          &
  &   unit=InpMsh             ,&
  &   GmfKey=GmfQuadrilaterals,&
  &   ad0=1                   ,&
  &   ad1=NmbQad              ,&
  &   Tab=QadTab(:,1:)        ,&
  &   Ref=QadRef(  1:)         )
  
  do i=1,10
    print '(3x,"qad",i6," nd:",4(i6,1x)," ref: ",i0)',i,QadTab(1:4,i),QadRef(i)
  enddo
  
  !!> Lecture par tableau 1D sans recopie (interface à écrire en indiquand le stride)
  !block 
  !  use iso_c_binding, only: c_loc,c_f_pointer
  !  integer     , pointer :: nodes(:)
  !  
  !  call c_f_pointer(cptr=c_loc(QadTab), fptr=nodes, shape=[4*NmbQad]) !> binding QadTab(:,:) and nodes(:)
  !  
  !  res=GmfGetElements(                &
  !  &   InpMsh                        ,&
  !  &   GmfQuadrilaterals             ,&
  !  &   1                             ,&
  !  &   NmbQad                        ,&
  !  &   0, m                          ,&
  !  &   nodes(   1), nodes(4*NmbQad-3),&
  !  &   QadRef(  1), QadRef(NmbQad)    )
  !end block
  
  ! Close the quadrilateral mesh
  res=GmfCloseMeshF90(unit=InpMsh)
  print '("Input  Mesh Close   : ",a)',trim(InpFile)
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  ! Allocate TriTab and TriRef
  NmbTri=2*NmbQad
  allocate(TriTab(1:3,1:NmbTri))
  allocate(TriRef(    1:NmbTri))
  
  ! Convert the quad mesh into a triangular one
  do i=1,NmbTri
    if(mod(i,2) .EQ. 1) then
      TriTab(1,i) = QadTab(1,(i+1)/2)
      TriTab(2,i) = QadTab(2,(i+1)/2)
      TriTab(3,i) = QadTab(3,(i+1)/2)
      TriRef(  i) = QadRef(  (i+1)/2)
    else
      TriTab(1,i) = QadTab(1,(i+1)/2)
      TriTab(2,i) = QadTab(3,(i+1)/2)
      TriTab(3,i) = QadTab(4,(i+1)/2)
      TriRef(  i) = QadRef(  (i+1)/2)
    endif
  end do
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  ! Write a triangular mesh
  print '(/"Output Mesh Open    : ",a )',trim(OutFile)
  
  OutMsh=GmfOpenMeshF90(name=trim(OutFile),GmfKey=GmfWrite,ver=ver,dim=dim)
  
  print '( "Output Mesh Idx     : ",i0)',InpMsh
  print '( "Output Mesh ver     : ",i0)',ver
  print '( "Output Mesh dim     : ",i0)',dim
  if(OutMsh==0) STOP ' OutMsh = 0'
  
  ! Set the number of vertices
  res=GmfSetKwdF90(unit=OutMsh, GmfKey=GmfVertices, Nmb=NmbVer)
  print '( "Output Mesh NmbVer  : ",i0)', NmbVer
  
  ! Write them down using separate pointers for each scalar entry  
  res=GmfSetBlockF90(        &
  &   unit=OutMsh           ,&
  &   GmfKey=GmfVertices    ,&
  &   ad0=1                 ,&
  &   ad1=NmbVer            ,&
  &   Tab=VerTab(:,1:NmbVer),&
  &   Ref=VerRef(  1:NmbVer) )
  
  ! Write the triangles using 4 independant set of arguments 
  ! for each scalar entry: node1, node2, node3 and reference
  res=GmfSetKwdF90(unit=OutMsh, GmfKey=GmfTriangles, Nmb=NmbTri)
  print '( "Output Mesh NmbTri  : ",i0)', NmbTri
  
  res=GmfSetBlockF90(        &
  &   unit=OutMsh           ,&
  &   GmfKey=GmfTriangles   ,&
  &   ad0=1                 ,&
  &   ad1=NmbTri            ,&
  &   Tab=TriTab(:,1:NmbTri),&
  &   Ref=TriRef(  1:NmbVer) )
  
  !!> Ecriture par tableau 1D sans recopie (interface fortran à écrire)
  !block 
  !  use iso_c_binding, only: c_loc,c_f_pointer
  !  integer     , pointer :: nodes(:)
  !  
  !  print '(/"binding TriTab(:,:) and nodes(:)")'
  !  
  !  call c_f_pointer(cptr=c_loc(TriTab), fptr=nodes, shape=[3*NmbTri]) !> binding TriTab(:,:) and nodes(:)
  !  
  !  print '(/"Triangle: ",i6)',1
  !  print '( "TriTab:",3(i6,1x) )',TriTab(1,1),TriTab(2,1),TriTab(3,1)
  !  print '( "nodes: ",3(i6,1x)/)',nodes(1),nodes(2),nodes(3)
  !  print '(/"Triangle: ",i6)',NmbTri
  !  print '( "TriTab:",3(i6,1x) )',TriTab(1,NmbTri),TriTab(2,NmbTri),TriTab(3,NmbTri)
  !  print '( "nodes: ",3(i6,1x)/)',nodes(3*NmbTri-2),nodes(3*NmbTri-1),nodes(3*NmbTri)
  !  
  !  res=GmfSetElements(                &
  !  &   InpMsh                        ,&
  !  &   GmfTriangles                  ,&
  !  &   1                             ,&
  !  &   NmbTri                        ,&
  !  !   0, m                          ,&
  !  &   0, c_null_ptr                 ,&
  !  &   nodes(   1), nodes(3*NmbTri-2),&
  !  &   TriRef(  1), TriRef(NmbTri)    )
  !  
  !end block

  ! Don't forget to close the file
  res=GmfCloseMeshF90(unit=OutMsh)
  print '("Output Mesh Close   : ",a)',trim(OutFile)  
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  ! Create a solution file
  
  print '(/"Output Solu Open    : ",a )',trim(SolFile)
  
  OutSol=GmfOpenMeshF90(name=trim(SolFile),GmfKey=GmfWrite,ver=ver,dim=dim)

  print '( "Output Solu Idx     : ",i0)',OutSol
  print '( "Output Solu ver     : ",i0)',ver
  print '( "Output Solu dim     : ",i0)',dim
  if( OutSol==0 ) STOP ' OutSol = 0'
  
  ! Set the solution kinds
  NmbField=3
  allocate( fields    (1:NmbField))
  allocate( fieldsName(1:NmbField))
  fields(1:NmbField) = [GmfSca,GmfVec,GmfSca]  
  fieldsName(1:NmbField)=['sca_1','vec_1','sca_2']
  
  !nomDesChamps : block
  !  integer               :: iField,nChar
  !  character(:), pointer :: fieldName=>null()
  !  res=GmfSetKwdF90(unit=OutSol, GmfKey=GmfReferenceStrings, Nmb=NmbField)
  !  do iField=1,NmbField
  !    nChar=len_trim(fieldsName(iField)) ! print '("nChar: ",i0)',nChar
  !    allocate(character(len=nChar+3) :: fieldName)
  !    write(fieldName,'(a,1x,i0,a)')trim(fieldsName(iField)),iField,C_NULL_CHAR
  !    print '("fieldName: ",a)',fieldName
  !    
  !    !ress=GmfSetLin(unit=OutSol, GmfKey=GmfReferenceStrings, GmfSolAtVertices, 1, fieldName)
  !    
  !    deallocate(fieldName)
  !  enddo
  !end block nomDesChamps
  
  allocate(solTab(1:5,NmbVer)) !       1+   dim+     1
  print '( "Output Solu NmbVer  : ",i0)',NmbVer
  print '( "Output Solu nFields : ",i0)',NmbField
  print '( "Output Solu fields  : ", *(i0,1x))',fields(1:NmbField)
  
  ! Set the number of solutions (one per vertex)
  res=GmfSetKwdF90(unit=OutSol, GmfKey=GmfSolAtVertices, Nmb=NmbVer, d=NmbField, t=fields(1:NmbField), s=0, ho=ho)
  
  ! Compute the dummy solution fields
  do i=1,NmbVer
    solTab(  1,i)=VerTab(1,i)
    solTab(2:4,i)=[VerTab(1,i),VerTab(2,i),0d0]
    solTab(  5,i)=VerTab(2,i)
  enddo
  
  res=GmfSetBlockF90(          &
  &   unit=OutMsh             ,&
  &   GmfKey=GmfSolAtVertices ,&
  &   ad0=1                   ,&
  &   ad1=NmbVer              ,&
  &   Tab=solTab(:,1:NmbVer)   )
  
  ! Don't forget to close the file
  res=GmfCloseMeshF90(unit=OutSol)
  print '("Output Solu Close   : ",a)',trim(SolFile)    
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  !> Cleanning Memory
  deallocate(VerTab,VerRef)
  deallocate(QadTab,QadRef)
  deallocate(TriTab,TriRef)
  deallocate(solTab)
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
  !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
  print '(/"Constrol"/"vizir4 -in ",a," -sol ",a,/)',trim(OutFile),trim(SolFile)
  !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
  
end program test_libmeshb_block_f90