1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/*
* Copyright 2002-2012 Drew Noakes
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* More information about this project is available at:
*
* http://drewnoakes.com/code/exif/
* http://code.google.com/p/metadata-extractor/
*/
package com.drew.lang;
import com.drew.lang.annotations.NotNull;
import com.drew.lang.annotations.Nullable;
import java.io.Serializable;
/**
* Immutable class for holding a rational number without loss of precision. Provides
* a familiar representation via toString() in form <code>numerator/denominator</code>.
*
* @author Drew Noakes http://drewnoakes.com
*/
public class Rational extends java.lang.Number implements Serializable
{
private static final long serialVersionUID = 510688928138848770L;
/** Holds the numerator. */
private final long _numerator;
/** Holds the denominator. */
private final long _denominator;
/**
* Creates a new instance of Rational. Rational objects are immutable, so
* once you've set your numerator and denominator values here, you're stuck
* with them!
*/
public Rational(long numerator, long denominator)
{
_numerator = numerator;
_denominator = denominator;
}
/**
* Returns the value of the specified number as a <code>double</code>.
* This may involve rounding.
*
* @return the numeric value represented by this object after conversion
* to type <code>double</code>.
*/
public double doubleValue()
{
return (double) _numerator / (double) _denominator;
}
/**
* Returns the value of the specified number as a <code>float</code>.
* This may involve rounding.
*
* @return the numeric value represented by this object after conversion
* to type <code>float</code>.
*/
public float floatValue()
{
return (float) _numerator / (float) _denominator;
}
/**
* Returns the value of the specified number as a <code>byte</code>.
* This may involve rounding or truncation. This implementation simply
* casts the result of <code>doubleValue()</code> to <code>byte</code>.
*
* @return the numeric value represented by this object after conversion
* to type <code>byte</code>.
*/
public final byte byteValue()
{
return (byte) doubleValue();
}
/**
* Returns the value of the specified number as an <code>int</code>.
* This may involve rounding or truncation. This implementation simply
* casts the result of <code>doubleValue()</code> to <code>int</code>.
*
* @return the numeric value represented by this object after conversion
* to type <code>int</code>.
*/
public final int intValue()
{
return (int) doubleValue();
}
/**
* Returns the value of the specified number as a <code>long</code>.
* This may involve rounding or truncation. This implementation simply
* casts the result of <code>doubleValue()</code> to <code>long</code>.
*
* @return the numeric value represented by this object after conversion
* to type <code>long</code>.
*/
public final long longValue()
{
return (long) doubleValue();
}
/**
* Returns the value of the specified number as a <code>short</code>.
* This may involve rounding or truncation. This implementation simply
* casts the result of <code>doubleValue()</code> to <code>short</code>.
*
* @return the numeric value represented by this object after conversion
* to type <code>short</code>.
*/
public final short shortValue()
{
return (short) doubleValue();
}
/** Returns the denominator. */
public final long getDenominator()
{
return this._denominator;
}
/** Returns the numerator. */
public final long getNumerator()
{
return this._numerator;
}
/**
* Returns the reciprocal value of this object as a new Rational.
*
* @return the reciprocal in a new object
*/
@NotNull
public Rational getReciprocal()
{
return new Rational(this._denominator, this._numerator);
}
/** Checks if this rational number is an Integer, either positive or negative. */
public boolean isInteger()
{
return _denominator == 1 ||
(_denominator != 0 && (_numerator % _denominator == 0)) ||
(_denominator == 0 && _numerator == 0);
}
/**
* Returns a string representation of the object of form <code>numerator/denominator</code>.
*
* @return a string representation of the object.
*/
@NotNull
public String toString()
{
return _numerator + "/" + _denominator;
}
/** Returns the simplest representation of this Rational's value possible. */
@NotNull
public String toSimpleString(boolean allowDecimal)
{
if (_denominator == 0 && _numerator != 0) {
return toString();
} else if (isInteger()) {
return Integer.toString(intValue());
} else if (_numerator != 1 && _denominator % _numerator == 0) {
// common factor between denominator and numerator
long newDenominator = _denominator / _numerator;
return new Rational(1, newDenominator).toSimpleString(allowDecimal);
} else {
Rational simplifiedInstance = getSimplifiedInstance();
if (allowDecimal) {
String doubleString = Double.toString(simplifiedInstance.doubleValue());
if (doubleString.length() < 5) {
return doubleString;
}
}
return simplifiedInstance.toString();
}
}
/**
* Decides whether a brute-force simplification calculation should be avoided
* by comparing the maximum number of possible calculations with some threshold.
*
* @return true if the simplification should be performed, otherwise false
*/
private boolean tooComplexForSimplification()
{
double maxPossibleCalculations = (((double) (Math.min(_denominator, _numerator) - 1) / 5d) + 2);
final int maxSimplificationCalculations = 1000;
return maxPossibleCalculations > maxSimplificationCalculations;
}
/**
* Compares two <code>Rational</code> instances, returning true if they are mathematically
* equivalent.
*
* @param obj the Rational to compare this instance to.
* @return true if instances are mathematically equivalent, otherwise false. Will also
* return false if <code>obj</code> is not an instance of <code>Rational</code>.
*/
@Override
public boolean equals(@Nullable Object obj)
{
if (obj==null || !(obj instanceof Rational))
return false;
Rational that = (Rational) obj;
return this.doubleValue() == that.doubleValue();
}
@Override
public int hashCode()
{
return (23 * (int)_denominator) + (int)_numerator;
}
/**
* <p>
* Simplifies the Rational number.</p>
* <p>
* Prime number series: 1, 2, 3, 5, 7, 9, 11, 13, 17</p>
* <p>
* To reduce a rational, need to see if both numerator and denominator are divisible
* by a common factor. Using the prime number series in ascending order guarantees
* the minimum number of checks required.</p>
* <p>
* However, generating the prime number series seems to be a hefty task. Perhaps
* it's simpler to check if both d & n are divisible by all numbers from 2 ->
* (Math.min(denominator, numerator) / 2). In doing this, one can check for 2
* and 5 once, then ignore all even numbers, and all numbers ending in 0 or 5.
* This leaves four numbers from every ten to check.</p>
* <p>
* Therefore, the max number of pairs of modulus divisions required will be:</p>
* <code><pre>
* 4 Math.min(denominator, numerator) - 1
* -- * ------------------------------------ + 2
* 10 2
* <p/>
* Math.min(denominator, numerator) - 1
* = ------------------------------------ + 2
* 5
* </pre></code>
*
* @return a simplified instance, or if the Rational could not be simplified,
* returns itself (unchanged)
*/
@NotNull
public Rational getSimplifiedInstance()
{
if (tooComplexForSimplification()) {
return this;
}
for (int factor = 2; factor <= Math.min(_denominator, _numerator); factor++) {
if ((factor % 2 == 0 && factor > 2) || (factor % 5 == 0 && factor > 5)) {
continue;
}
if (_denominator % factor == 0 && _numerator % factor == 0) {
// found a common factor
return new Rational(_numerator / factor, _denominator / factor);
}
}
return this;
}
}
|