File: convert.c

package info (click to toggle)
libminc 2.4.07-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,288 kB
  • sloc: ansic: 57,268; cpp: 3,654; sh: 100; makefile: 23; ruby: 18
file content (583 lines) | stat: -rw-r--r-- 17,277 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/** \file convert.c
 * \brief MINC 2.0 Coordinate and Voxel Conversion Functions
 * \author Bert Vincent
 *
 * Functions to convert "real" valued data to and from "voxel" valued
 * data, and to convert coordinates between "voxel" and "world" systems.
 */

/**
 * \defgroup mi2Cvt MINC 2.0 Coordinate and Voxel Conversion Functions
 */
#include <stdlib.h>
#include <hdf5.h>
#include <math.h>
#include <float.h>
#include "minc2.h"
#include "minc2_private.h"


/** Convert values between real (scaled) values and voxel (unscaled)
 * values.  The voxel value is the unscaled value, and corresponds to the
 * value actually stored in the file, whereas the "real" value is the
 * value at the given location after scaling has been applied.
 * 
 * The \a coords parameter specifies the location at which the
 * conversion is performed.  This is needed because MINC supports
 * per-slice scaling, therefore a conversion performed at one location
 * may differ from that performed at another location.
 *
 * \param volume A volume handle
 * \param coords The position for which to perform the conversion.
 * \param ncoords The length of the \a coords array.
 * \param real_value The original real value, to be converted to voxel.
 * \param voxel_value_ptr A pointer to the converted voxel value.
 * \ingroup mi2Cvt
 */
int miconvert_real_to_voxel(mihandle_t volume,
                        const misize_t coords[],
                        size_t ncoords,
                        double real_value,
                        double *voxel_value_ptr
                        )
{
    int result = MI_NOERROR;
    double valid_min, valid_max;
    double slice_min, slice_max;
    double voxel_range, voxel_offset;
    double real_range, real_offset;

    /* get valid min/max, image min/max 
     */
    miget_volume_valid_range(volume, &valid_max, &valid_min);
    
    /* get image min/max 
     */
    miget_slice_range(volume, coords, ncoords, &slice_max, &slice_min);
    
    /* Calculate the actual conversion.
     */
    voxel_offset = valid_min;
    real_offset = slice_min;
    voxel_range = valid_max - valid_min;
    real_range = slice_max - slice_min;
    
    real_value = (real_value - real_offset) / real_range;
    *voxel_value_ptr = (real_value * voxel_range) + voxel_offset;

    return (result);
}


/** Convert values between real (scaled) values and voxel (unscaled)
 * values.  The voxel value is the unscaled value, and corresponds to the
 * value actually stored in the file, whereas the "real" value is the
 * value at the given location after scaling has been applied.
 *
 * The \a coords parameter specifies the location at which the
 * conversion is performed.  This is needed because MINC supports
 * per-slice scaling, therefore a conversion performed at one location
 * may differ from that performed at another location. 
 *
 * \param volume A volume handle
 * \param coords The position for which to perform the conversion.
 * \param ncoords The length of the \a coords array.
 * \param voxel_value The original voxel value, to be converted to real.
 * \param real_value_ptr A pointer to the converted real value.
 * \ingroup mi2Cvt
 */
int miconvert_voxel_to_real(mihandle_t volume,
                        const misize_t coords[],
                        int ncoords,
                        double voxel_value,
                        double *real_value_ptr)
{
    int result = MI_NOERROR;
    double valid_min, valid_max;
    double slice_min, slice_max;
    double voxel_range, voxel_offset;
    double real_range, real_offset;

    if( volume->volume_type==MI_TYPE_FLOAT    || volume->volume_type==MI_TYPE_DOUBLE ||
      volume->volume_type==MI_TYPE_FCOMPLEX || volume->volume_type==MI_TYPE_DCOMPLEX ){
      // If floating values voxel_value is the real value
      *real_value_ptr = voxel_value;
      return 0;
    }


    /* get valid min/max, image min/max 
     */
    miget_volume_valid_range(volume, &valid_max, &valid_min);
    
    /* get image min/max 
     */
    miget_slice_range(volume, coords, ncoords, &slice_max, &slice_min);

    /* Calculate the actual conversion.
     */
    voxel_offset = valid_min;
    real_offset = slice_min;
    voxel_range = valid_max - valid_min;
    real_range = slice_max - slice_min;
    
    voxel_value = (voxel_value - voxel_offset) / voxel_range;
    *real_value_ptr = (voxel_value * real_range) + real_offset;
    return (result);
}

/** \internal
 */
static void
mireorder_voxel_to_xyz(mihandle_t volume, 
                       const double voxel[], 
                       double xyz[MI2_3D], 
                       midimclass_t dimclass)
{
    int i, axis;

    for (i = 0; i < volume->number_of_dims; i++) {
        midimhandle_t hdim = volume->dim_handles[i];
        axis = hdim->world_index;
        if ( axis >= 0 && dimclass == hdim->dim_class) {
            xyz[axis] = voxel[i];
        }
    }
}

/** \internal
 */
static void
mireorder_xyz_to_voxel(mihandle_t volume, 
                       const double xyz[MI2_3D], 
                       double voxel[],
                       midimclass_t dimclass)
{
    int i, axis;

    for (i = 0; i < volume->number_of_dims; i++) {
        midimhandle_t hdim = volume->dim_handles[i];
        axis = hdim->world_index;
        if ( axis >= 0 && dimclass == hdim->dim_class) {
            voxel[i] = xyz[axis];
        }
    }
}

/** Converts an N-dimensional spatial position in voxel coordinates into a 
 * 3-dimensional spatial position in world coordinates.
 *
 * The returned world coordinate vector is in a standardized order, with
 * the X position first (at index 0), followed by the Y and Z coordinates.
 * The voxel coordinate vector is in the native order appropriate to the
 * file.
 *
 * \ingroup mi2Cvt
 */
int miconvert_voxel_to_world(mihandle_t volume,
                         const double voxel[],
                         double world[MI2_3D])
{
    double temp[MI2_3D];

    mireorder_voxel_to_xyz(volume, voxel, temp, MI_DIMCLASS_SPATIAL);
    mitransform_coord(world, volume->v2w_transform, temp);
    return (MI_NOERROR);
}

/** Converts a 3-dimensional spatial position in world coordinates into a 
 * N-dimensional spatial position in voxel coordinates.
 *
 * The input world coordinate vector is in a standardized order, with
 * the X position first (at index 0), followed by the Y and Z coordinates.
 * The voxel coordinate vector is in the native order appropriate to the
 * file.
 *
 * \ingroup mi2Cvt
 */
int miconvert_world_to_voxel(mihandle_t volume,
                         const double world[MI2_3D],
                         double voxel[])
{
    double temp[MI2_3D];
    int i;

    for (i = 0; i < volume->number_of_dims; i++) {
        voxel[i] = 0.0;
    }

    mitransform_coord(temp, volume->w2v_transform, world);
    mireorder_xyz_to_voxel(volume, temp, voxel, MI_DIMCLASS_SPATIAL);
    return (MI_NOERROR);
}

/** This function retrieves the real values of a position in the
 *  MINC volume.  The "real" value is the value at the given location 
 *  after scaling has been applied.
 *
 * \param volume A volume handle
 * \param coords The voxel position to retrieve
 * \param ndims The number of values in the \a coords array
 * \param value_ptr Pointer to a double variable to hold the returned value.
 *
 * \ingroup mi2Cvt
 */
int miget_real_value(mihandle_t volume,
                 const misize_t coords[],
                 int ndims,
                 double *value_ptr)
{
    double voxel;
    int result;

    result = miget_voxel_value(volume, coords, ndims, &voxel);
    if (result != MI_NOERROR) {
        return (result);
    }
    miconvert_voxel_to_real(volume, coords, ndims, voxel, value_ptr);
    return (MI_NOERROR);
}

/** This function sets the  real value of a position in the MINC
 *  volume. The "real" value is the value at the given location 
 *  after scaling has been applied.
 *
 * \param volume A volume handle
 * \param coords The voxel position to retrieve
 * \param ndims The number of values in the \a coords array
 * \param value The value to save at this location.
 *
 * \ingroup mi2Cvt
 */
int miset_real_value(mihandle_t volume,
                 const misize_t coords[],
                 int ndims,
                 double value)
{
    double voxel;

    if ((volume->mode & MI2_OPEN_RDWR) == 0) {
        //TODO: report that file is not open properly
        return (MI_ERROR);
    }

    miconvert_real_to_voxel(volume, coords, ndims, value, &voxel);
    return (miset_voxel_value(volume, coords, ndims, voxel));
}


/**
 * This function calculates the start values for the volume dimensions,
 * assuming that the spatial origin is relocated to the given world
 * coordinate.
 *
 * \ingroup mi2Cvt
 */
int
miconvert_world_origin_to_start( mihandle_t volume,
                                 double world[3],
                                 double starts[3])
{
    fprintf(stderr, "miconvert_world_origin_to_start: Not implemented.\n");
    return (MI_NOERROR);
}

/**
 * This function calculates the start values for the volume dimensions,
 * assuming that the spatial origin is relocated to the given world
 * coordinate.
 *
 * \ingroup mi2Cvt
 */
int
miconvert_spatial_frequency_origin_to_start( mihandle_t volume,
                                             double world[3],
                                             double starts[3])
{
    fprintf(stderr, "miconvert_spatial_frequency_origin_to_start: Not implemented.\n");
    return (MI_NOERROR);
}

static double 
dot_vectors(int n, double v1[], double v2[])
{
    int i;
    double d;

    d = 0.0;
    for ( i = 0; i < n; i++ ) {
        d += v1[i] * v2[i];
    }
    return ( d );
}

static int
solve_linear_system( int n, double **coefs, double *values, double *solution)
{
    int i;

    for ( i = 0; i < n; i++ ) {
        solution[i] = values[i];
    }

    return (scaled_maximal_pivoting_gaussian_elimination_real(n, coefs, 1,
                                                              &solution ));
}

static void
convert_transform_origin_to_starts(mihandle_t hvol,
                                   double origin[],
                                   double starts[] )
{
    int axis;
    int which[MI2_3D];
    int n_axes, i, j;
    double o_dot_c, c_dot_c;
    double x_dot_x, x_dot_y, x_dot_v, y_dot_y, y_dot_v, bottom;
    double **matrix, solution[MI2_3D];

    for ( i = 0; i < hvol->number_of_dims; i++) {
        starts[i] = 0.0;
    }

    /*--- get the list of valid axes (which) */

    n_axes = 0;
    for ( i = 0; i < hvol->number_of_dims; i++ ) {
        axis = hvol->dim_handles[i]->world_index;
        if ( axis >= 0 ) {
            which[axis] = i;
            ++n_axes;
        }
    }

    /*--- get the starts: computed differently for 1, 2, or 3 axes */

    switch (n_axes) {
    case 1:
        o_dot_c = dot_vectors(MI2_3D, 
                              origin, 
                              hvol->dim_handles[which[0]]->direction_cosines);
        c_dot_c = dot_vectors(MI2_3D, 
                              hvol->dim_handles[which[0]]->direction_cosines,
                              hvol->dim_handles[which[0]]->direction_cosines);
        if ( c_dot_c != 0.0 ) {
            starts[which[0]] = o_dot_c / c_dot_c;
        }
        break;

    case 2:
        x_dot_x = dot_vectors(MI2_3D, 
                              hvol->dim_handles[which[0]]->direction_cosines,
                              hvol->dim_handles[which[0]]->direction_cosines );
        x_dot_v = dot_vectors(MI2_3D, 
                              hvol->dim_handles[which[0]]->direction_cosines,
                              origin );
        x_dot_y = dot_vectors(MI2_3D, 
                              hvol->dim_handles[which[0]]->direction_cosines,
                              hvol->dim_handles[which[1]]->direction_cosines );
        y_dot_y = dot_vectors(MI2_3D, 
                              hvol->dim_handles[which[1]]->direction_cosines,
                              hvol->dim_handles[which[1]]->direction_cosines );
        y_dot_v = dot_vectors(MI2_3D, 
                              hvol->dim_handles[which[1]]->direction_cosines, 
                              origin );

        bottom = x_dot_x * y_dot_y - x_dot_y * x_dot_y;

        if ( bottom != 0.0 ) {
            starts[which[0]] = (x_dot_v * y_dot_y - x_dot_y * y_dot_v) / bottom;
            starts[which[1]] = (y_dot_v * x_dot_x - x_dot_y * x_dot_v) / bottom;
        }
        break;

    case 3:
        /*--- this is the usual case, solve the equations to find what
              starts give the desired origin */

        matrix = alloc2d(MI2_3D, MI2_3D);

        for ( i = 0; i < MI2_3D; i++) {
            for ( j = 0; j < hvol->number_of_dims; j++ ) {
                matrix[i][j] = hvol->dim_handles[j]->direction_cosines[i];
            }
        }

        if ( solve_linear_system( MI2_3D, matrix, origin, solution ) ) {
            starts[which[0]] = solution[0];
            starts[which[1]] = solution[1];
            starts[which[2]] = solution[2];
        }

        free2d(MI2_3D, matrix);

        break;
    }
}

/**
 * This function sets the world coordinates of the point (0,0,0) in voxel
 * coordinates.  This changes the constant offset of the two coordinate
 * systems.
 *
 * \ingroup mi2Cvt
 */
int miset_world_origin(mihandle_t volume, /**< A volume handle */
                   double world[MI2_3D]) /**< The world coordinates of voxel origin  */
{
    double starts[MI2_3D];
    int i;

    convert_transform_origin_to_starts(volume, world, starts);
    for (i = 0; i < volume->number_of_dims; i++) {
        midimhandle_t hdim = volume->dim_handles[i];
        if (hdim->dim_class == MI_DIMCLASS_SPATIAL || 
            hdim->dim_class == MI_DIMCLASS_SFREQUENCY) {
            hdim->start = starts[hdim->world_index];
        }
    }

    /* Get the voxel to world transform for the volume
     */
    miget_voxel_to_world(volume, volume->v2w_transform);

    /* Calculate the inverse transform */
    miinvert_transform(volume->v2w_transform, volume->w2v_transform);

    return (MI_NOERROR);
}

/**
 * This function sets the world coordinates of the point (0,0,0) in voxel
 * coordinates.  This changes the constant offset of the two coordinate
 * systems.
 *
 * \ingroup mi2Cvt
 */
int
miset_spatial_frequency_origin(mihandle_t volume,
                               double world[3])
{
    if ((volume->mode & MI2_OPEN_RDWR) == 0) {
        return (MI_ERROR);
    }

    fprintf(stderr, "miset_spatial_frequency_origin: Not implemented.\n");
    return (MI_NOERROR);
}

/** This function retrieves the voxel values of a position in the
 * MINC volume. The voxel value is the unscaled value, and corresponds
 * to the value actually stored in the file.
 *
 * \ingroup mi2Cvt
 */
int miget_voxel_value(mihandle_t volume,
                  const misize_t coords[],
                  int ndims,
                  double *voxel_ptr)
{
    int result;
    misize_t count[MI2_MAX_VAR_DIMS];
    int i;

    for (i = 0; i < volume->number_of_dims; i++) {
        count[i] = 1;
    }
    result = miget_voxel_value_hyperslab(volume, MI_TYPE_DOUBLE, 
                                         coords, count, voxel_ptr);
    return (result);
}

/** This function sets the voxel value of a position in the MINC
 * volume.  The voxel value is the unscaled value, and corresponds to the
 * value actually stored in the file.
 *
 * \ingroup mi2Cvt
 */
int miset_voxel_value(mihandle_t volume,
                  const misize_t coords[],
                  int ndims,
                  double voxel)
{
    int result;
    misize_t count[MI2_MAX_VAR_DIMS];
    int i;

    if ((volume->mode & MI2_OPEN_RDWR) == 0) {
        return (MI_ERROR);
    }

    for (i = 0; i < ndims; i++) {
        count[i] = 1;
    }
    
    result = miset_voxel_value_hyperslab(volume, MI_TYPE_DOUBLE, 
                                         coords, count, &voxel);
    return (result);
}


int miget_volume_real_range(mihandle_t volume, double real_range[2])
{
    hid_t spc_id;
    int n;
    double *buffer;
    int i;

    /* First find the real minimum.
     */
    spc_id = H5Dget_space(volume->imin_id);

    n = (int) H5Sget_simple_extent_npoints(spc_id);

    H5Sclose(spc_id);

    buffer = malloc(n * sizeof(double));
    if (buffer == NULL) {
        return (MI_ERROR);
    }

    H5Dread(volume->imin_id, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,
            buffer);

    real_range[0] = DBL_MAX;

    for (i = 0; i < n; i++) {
        if (buffer[i] < real_range[0]) {
            real_range[0] = buffer[i];
        }
    }
    
    free(buffer);

    /* Now find the maximum.
     */
    spc_id = H5Dget_space(volume->imax_id);

    n = (int) H5Sget_simple_extent_npoints(spc_id);

    H5Sclose(spc_id);

    buffer = malloc(n * sizeof(double));
    if (buffer == NULL) {
        return (MI_ERROR);
    }

    H5Dread(volume->imax_id, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT,
            buffer);

    real_range[1] = -DBL_MAX;

    for (i = 0; i < n; i++) {
        if (buffer[i] > real_range[1]) {
            real_range[1] = buffer[i];
        }
    }
    
    free(buffer);

    return (MI_NOERROR);
}

/* kate: indent-mode cstyle; indent-width 2; replace-tabs on; */