1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
|
/***************************************************************************
* msrutils.c:
*
* Generic routines to operate on Mini-SEED records.
*
* Written by Chad Trabant
* ORFEUS/EC-Project MEREDIAN
* IRIS Data Management Center
*
* modified: 2016.283
***************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "libmseed.h"
/***************************************************************************
* msr_init:
*
* Initialize and return an MSRecord struct, allocating memory if
* needed. If memory for the fsdh and datasamples fields has been
* allocated the pointers will be retained for reuse. If a blockette
* chain is present all associated memory will be released.
*
* Returns a pointer to a MSRecord struct on success or NULL on error.
***************************************************************************/
MSRecord *
msr_init (MSRecord *msr)
{
void *fsdh = 0;
void *datasamples = 0;
if (!msr)
{
msr = (MSRecord *)malloc (sizeof (MSRecord));
}
else
{
fsdh = msr->fsdh;
datasamples = msr->datasamples;
if (msr->blkts)
msr_free_blktchain (msr);
if (msr->ststate)
free (msr->ststate);
}
if (msr == NULL)
{
ms_log (2, "msr_init(): Cannot allocate memory\n");
return NULL;
}
memset (msr, 0, sizeof (MSRecord));
msr->fsdh = fsdh;
msr->datasamples = datasamples;
msr->reclen = -1;
msr->samplecnt = -1;
msr->byteorder = -1;
msr->encoding = -1;
return msr;
} /* End of msr_init() */
/***************************************************************************
* msr_free:
*
* Free all memory associated with a MSRecord struct.
***************************************************************************/
void
msr_free (MSRecord **ppmsr)
{
if (ppmsr != NULL && *ppmsr != 0)
{
/* Free fixed section header if populated */
if ((*ppmsr)->fsdh)
free ((*ppmsr)->fsdh);
/* Free blockette chain if populated */
if ((*ppmsr)->blkts)
msr_free_blktchain (*ppmsr);
/* Free datasamples if present */
if ((*ppmsr)->datasamples)
free ((*ppmsr)->datasamples);
/* Free stream processing state if present */
if ((*ppmsr)->ststate)
free ((*ppmsr)->ststate);
free (*ppmsr);
*ppmsr = NULL;
}
} /* End of msr_free() */
/***************************************************************************
* msr_free_blktchain:
*
* Free all memory associated with a blockette chain in a MSRecord
* struct and set MSRecord->blkts to NULL. Also reset the shortcut
* blockette pointers.
***************************************************************************/
void
msr_free_blktchain (MSRecord *msr)
{
if (msr)
{
if (msr->blkts)
{
BlktLink *bc = msr->blkts;
BlktLink *nb = NULL;
while (bc)
{
nb = bc->next;
if (bc->blktdata)
free (bc->blktdata);
free (bc);
bc = nb;
}
msr->blkts = 0;
}
msr->Blkt100 = 0;
msr->Blkt1000 = 0;
msr->Blkt1001 = 0;
}
} /* End of msr_free_blktchain() */
/***************************************************************************
* msr_addblockette:
*
* Add a blockette to the blockette chain of an MSRecord. 'blktdata'
* should be the body of the blockette type 'blkttype' of 'length'
* bytes without the blockette header (type and next offsets). The
* 'chainpos' value controls which end of the chain the blockette is
* added to. If 'chainpos' is 0 the blockette will be added to the
* end of the chain (last blockette), other wise it will be added to
* the beginning of the chain (first blockette).
*
* Returns a pointer to the BlktLink added to the chain on success and
* NULL on error.
***************************************************************************/
BlktLink *
msr_addblockette (MSRecord *msr, char *blktdata, int length, int blkttype,
int chainpos)
{
BlktLink *blkt;
if (!msr)
return NULL;
blkt = msr->blkts;
if (blkt)
{
if (chainpos != 0)
{
blkt = (BlktLink *)malloc (sizeof (BlktLink));
blkt->next = msr->blkts;
msr->blkts = blkt;
}
else
{
/* Find the last blockette */
while (blkt && blkt->next)
{
blkt = blkt->next;
}
blkt->next = (BlktLink *)malloc (sizeof (BlktLink));
blkt = blkt->next;
blkt->next = 0;
}
if (blkt == NULL)
{
ms_log (2, "msr_addblockette(): Cannot allocate memory\n");
return NULL;
}
}
else
{
msr->blkts = (BlktLink *)malloc (sizeof (BlktLink));
if (msr->blkts == NULL)
{
ms_log (2, "msr_addblockette(): Cannot allocate memory\n");
return NULL;
}
blkt = msr->blkts;
blkt->next = 0;
}
blkt->blktoffset = 0;
blkt->blkt_type = blkttype;
blkt->next_blkt = 0;
blkt->blktdata = (char *)malloc (length);
if (blkt->blktdata == NULL)
{
ms_log (2, "msr_addblockette(): Cannot allocate memory\n");
return NULL;
}
memcpy (blkt->blktdata, blktdata, length);
blkt->blktdatalen = length;
/* Setup the shortcut pointer for common blockettes */
switch (blkttype)
{
case 100:
msr->Blkt100 = blkt->blktdata;
break;
case 1000:
msr->Blkt1000 = blkt->blktdata;
break;
case 1001:
msr->Blkt1001 = blkt->blktdata;
break;
}
return blkt;
} /* End of msr_addblockette() */
/***************************************************************************
* msr_normalize_header:
*
* Normalize header values between the MSRecord struct and the
* associated fixed-section of the header and blockettes. Essentially
* this updates the SEED structured data in the MSRecord.fsdh struct
* and MSRecord.blkts chain with values stored at the MSRecord level.
*
* Returns the header length in bytes on success or -1 on error.
***************************************************************************/
int
msr_normalize_header (MSRecord *msr, flag verbose)
{
struct blkt_link_s *cur_blkt;
hptime_t hptimems;
int8_t usecoffset;
char seqnum[7];
int offset = 0;
int blktcnt = 0;
int reclenexp = 0;
int reclenfind;
if (!msr)
return -1;
/* Get start time rounded to tenths of milliseconds and microsecond offset */
ms_hptime2tomsusecoffset (msr->starttime, &hptimems, &usecoffset);
/* Update values in fixed section of data header */
if (msr->fsdh)
{
if (verbose > 2)
ms_log (1, "Normalizing fixed section of data header\n");
/* Roll-over sequence number if necessary */
if (msr->sequence_number > 999999)
msr->sequence_number = 1;
/* Update values in the MSRecord.fsdh struct */
snprintf (seqnum, 7, "%06d", msr->sequence_number);
memcpy (msr->fsdh->sequence_number, seqnum, 6);
msr->fsdh->dataquality = msr->dataquality;
msr->fsdh->reserved = ' ';
ms_strncpopen (msr->fsdh->network, msr->network, 2);
ms_strncpopen (msr->fsdh->station, msr->station, 5);
ms_strncpopen (msr->fsdh->location, msr->location, 2);
ms_strncpopen (msr->fsdh->channel, msr->channel, 3);
ms_hptime2btime (hptimems, &(msr->fsdh->start_time));
/* Determine the factor and multipler for sample rate */
if (ms_genfactmult (msr->samprate,
&(msr->fsdh->samprate_fact),
&(msr->fsdh->samprate_mult)))
{
if (verbose > 1)
ms_log (1, "Sampling rate out of range, cannot generate factor & multiplier: %g\n",
msr->samprate);
msr->fsdh->samprate_fact = 0;
msr->fsdh->samprate_mult = 0;
}
offset += 48;
if (msr->blkts)
msr->fsdh->blockette_offset = offset;
else
msr->fsdh->blockette_offset = 0;
}
/* Traverse blockette chain and perform necessary updates */
cur_blkt = msr->blkts;
if (cur_blkt && verbose > 2)
ms_log (1, "Normalizing blockette chain\n");
while (cur_blkt)
{
offset += 4;
if (cur_blkt->blkt_type == 100 && msr->Blkt100)
{
msr->Blkt100->samprate = (float)msr->samprate;
offset += sizeof (struct blkt_100_s);
}
else if (cur_blkt->blkt_type == 1000 && msr->Blkt1000)
{
msr->Blkt1000->byteorder = msr->byteorder;
msr->Blkt1000->encoding = msr->encoding;
/* Calculate the record length as an exponent of 2 */
for (reclenfind = 1, reclenexp = 1; reclenfind <= MAXRECLEN; reclenexp++)
{
reclenfind *= 2;
if (reclenfind == msr->reclen)
break;
}
if (reclenfind != msr->reclen)
{
ms_log (2, "msr_normalize_header(): Record length %d is not a power of 2\n",
msr->reclen);
return -1;
}
msr->Blkt1000->reclen = reclenexp;
offset += sizeof (struct blkt_1000_s);
}
else if (cur_blkt->blkt_type == 1001)
{
msr->Blkt1001->usec = usecoffset;
offset += sizeof (struct blkt_1001_s);
}
blktcnt++;
cur_blkt = cur_blkt->next;
}
if (msr->fsdh)
msr->fsdh->numblockettes = blktcnt;
return offset;
} /* End of msr_normalize_header() */
/***************************************************************************
* msr_duplicate:
*
* Duplicate an MSRecord struct including the fixed-section data
* header and blockette chain. If the datadup flag is true and the
* source MSRecord has associated data samples copy them as well.
*
* Returns a pointer to a new MSRecord on success and NULL on error.
***************************************************************************/
MSRecord *
msr_duplicate (MSRecord *msr, flag datadup)
{
MSRecord *dupmsr = 0;
int samplesize = 0;
if (!msr)
return NULL;
/* Allocate target MSRecord structure */
if ((dupmsr = msr_init (NULL)) == NULL)
return NULL;
/* Copy MSRecord structure */
memcpy (dupmsr, msr, sizeof (MSRecord));
/* Reset pointers to not alias memory held by other structures */
dupmsr->fsdh = NULL;
dupmsr->blkts = NULL;
dupmsr->datasamples = NULL;
dupmsr->ststate = NULL;
/* Copy fixed-section data header structure */
if (msr->fsdh)
{
/* Allocate memory for new FSDH structure */
if ((dupmsr->fsdh = (struct fsdh_s *)malloc (sizeof (struct fsdh_s))) == NULL)
{
ms_log (2, "msr_duplicate(): Error allocating memory\n");
msr_free (&dupmsr);
return NULL;
}
/* Copy the contents */
memcpy (dupmsr->fsdh, msr->fsdh, sizeof (struct fsdh_s));
}
/* Copy the blockette chain */
if (msr->blkts)
{
BlktLink *blkt = msr->blkts;
BlktLink *next = NULL;
dupmsr->blkts = 0;
while (blkt)
{
next = blkt->next;
/* Add blockette to chain of new MSRecord */
if (msr_addblockette (dupmsr, blkt->blktdata, blkt->blktdatalen,
blkt->blkt_type, 0) == NULL)
{
ms_log (2, "msr_duplicate(): Error adding blockettes\n");
msr_free (&dupmsr);
return NULL;
}
blkt = next;
}
}
/* Copy data samples if requested and available */
if (datadup && msr->datasamples)
{
/* Determine size of samples in bytes */
samplesize = ms_samplesize (msr->sampletype);
if (samplesize == 0)
{
ms_log (2, "msr_duplicate(): unrecognized sample type: '%c'\n",
msr->sampletype);
msr_free (&dupmsr);
return NULL;
}
/* Allocate memory for new data array */
if ((dupmsr->datasamples = (void *)malloc ((size_t) (msr->numsamples * samplesize))) == NULL)
{
ms_log (2, "msr_duplicate(): Error allocating memory\n");
msr_free (&dupmsr);
return NULL;
}
/* Copy the data array */
memcpy (dupmsr->datasamples, msr->datasamples, ((size_t) (msr->numsamples * samplesize)));
}
/* Otherwise make sure the sample array and count are zero */
else
{
dupmsr->datasamples = 0;
dupmsr->numsamples = 0;
}
return dupmsr;
} /* End of msr_duplicate() */
/***************************************************************************
* msr_samprate:
*
* Calculate and return a double precision sample rate for the
* specified MSRecord. If a Blockette 100 was included and parsed,
* the "Actual sample rate" (field 3) will be returned, otherwise a
* nominal sample rate will be calculated from the sample rate factor
* and multiplier in the fixed section data header.
*
* Returns the positive sample rate on success and -1.0 on error.
***************************************************************************/
double
msr_samprate (MSRecord *msr)
{
if (!msr)
return -1.0;
if (msr->Blkt100)
return (double)msr->Blkt100->samprate;
else
return msr_nomsamprate (msr);
} /* End of msr_samprate() */
/***************************************************************************
* msr_nomsamprate:
*
* Calculate a double precision nominal sample rate from the sample
* rate factor and multiplier in the FSDH struct of the specified
* MSRecord.
*
* Returns the positive sample rate on success and -1.0 on error.
***************************************************************************/
double
msr_nomsamprate (MSRecord *msr)
{
if (!msr)
return -1.0;
return ms_nomsamprate (msr->fsdh->samprate_fact, msr->fsdh->samprate_mult);
} /* End of msr_nomsamprate() */
/***************************************************************************
* msr_starttime:
*
* Convert a btime struct of a FSDH struct of a MSRecord (the record
* start time) into a high precision epoch time and apply time
* corrections if any are specified in the header and bit 1 of the
* activity flags indicates that it has not already been applied. If
* a Blockette 1001 is included and has been parsed the microseconds
* of field 4 are also applied.
*
* Returns a high precision epoch time on success and HPTERROR on
* error.
***************************************************************************/
hptime_t
msr_starttime (MSRecord *msr)
{
hptime_t starttime = msr_starttime_uc (msr);
if (!msr || starttime == HPTERROR)
return HPTERROR;
/* Check if a correction is included and if it has been applied,
bit 1 of activity flags indicates if it has been appiled */
if (msr->fsdh->time_correct != 0 &&
!(msr->fsdh->act_flags & 0x02))
{
starttime += (hptime_t)msr->fsdh->time_correct * (HPTMODULUS / 10000);
}
/* Apply microsecond precision in a parsed Blockette 1001 */
if (msr->Blkt1001)
{
starttime += (hptime_t)msr->Blkt1001->usec * (HPTMODULUS / 1000000);
}
return starttime;
} /* End of msr_starttime() */
/***************************************************************************
* msr_starttime_uc:
*
* Convert a btime struct of a FSDH struct of a MSRecord (the record
* start time) into a high precision epoch time. This time has no
* correction(s) applied to it.
*
* Returns a high precision epoch time on success and HPTERROR on
* error.
***************************************************************************/
hptime_t
msr_starttime_uc (MSRecord *msr)
{
if (!msr)
return HPTERROR;
if (!msr->fsdh)
return HPTERROR;
return ms_btime2hptime (&msr->fsdh->start_time);
} /* End of msr_starttime_uc() */
/***************************************************************************
* msr_endtime:
*
* Calculate the time of the last sample in the record; this is the
* actual last sample time and *not* the time "covered" by the last
* sample.
*
* On the epoch time scale the value of a leap second is the same as
* the second following the leap second, without external information
* the values are ambiguous.
*
* Leap second handling: when a record completely contains a leap
* second, starts before and ends after, the calculated end time will
* be adjusted (reduced) by one second.
*
* Returns the time of the last sample as a high precision epoch time
* on success and HPTERROR on error.
***************************************************************************/
hptime_t
msr_endtime (MSRecord *msr)
{
hptime_t span = 0;
LeapSecond *lslist = leapsecondlist;
if (!msr)
return HPTERROR;
if (msr->samprate > 0.0 && msr->samplecnt > 0)
span = (hptime_t) (((double)(msr->samplecnt - 1) / msr->samprate * HPTMODULUS) + 0.5);
/* Check if the record contains a leap second, if list is available */
if (lslist)
{
while (lslist)
{
if (lslist->leapsecond > msr->starttime &&
lslist->leapsecond <= (msr->starttime + span - HPTMODULUS))
{
span -= HPTMODULUS;
break;
}
lslist = lslist->next;
}
}
else
{
/* If a positive leap second occurred during this record as denoted by
* bit 4 of the activity flags being set, reduce the end time to match
* the now shifted UTC time. */
if (msr->fsdh)
if (msr->fsdh->act_flags & 0x10)
span -= HPTMODULUS;
}
return (msr->starttime + span);
} /* End of msr_endtime() */
/***************************************************************************
* msr_srcname:
*
* Generate a source name string for a specified MSRecord in the
* format: 'NET_STA_LOC_CHAN' or, if the quality flag is true:
* 'NET_STA_LOC_CHAN_QUAL'. The passed srcname must have enough room
* for the resulting string.
*
* Returns a pointer to the resulting string or NULL on error.
***************************************************************************/
char *
msr_srcname (MSRecord *msr, char *srcname, flag quality)
{
char *src = srcname;
char *cp = srcname;
if (!msr || !srcname)
return NULL;
/* Build the source name string */
cp = msr->network;
while (*cp)
{
*src++ = *cp++;
}
*src++ = '_';
cp = msr->station;
while (*cp)
{
*src++ = *cp++;
}
*src++ = '_';
cp = msr->location;
while (*cp)
{
*src++ = *cp++;
}
*src++ = '_';
cp = msr->channel;
while (*cp)
{
*src++ = *cp++;
}
if (quality)
{
*src++ = '_';
*src++ = msr->dataquality;
}
*src = '\0';
return srcname;
} /* End of msr_srcname() */
/***************************************************************************
* msr_print:
*
* Prints header values in an MSRecord struct, if 'details' is greater
* than 0 then detailed information about each blockette is printed.
* If 'details' is greater than 1 very detailed information is
* printed. If no FSDH (msr->fsdh) is present only a single line with
* basic information is printed.
***************************************************************************/
void
msr_print (MSRecord *msr, flag details)
{
double nomsamprate;
char srcname[50];
char time[25];
char b;
int idx;
if (!msr)
return;
/* Generate a source name string */
srcname[0] = '\0';
msr_srcname (msr, srcname, 0);
/* Generate a start time string */
ms_hptime2seedtimestr (msr->starttime, time, 1);
/* Report information in the fixed header */
if (details > 0 && msr->fsdh)
{
nomsamprate = msr_nomsamprate (msr);
ms_log (0, "%s, %06d, %c\n", srcname, msr->sequence_number, msr->dataquality);
ms_log (0, " start time: %s\n", time);
ms_log (0, " number of samples: %d\n", msr->fsdh->numsamples);
ms_log (0, " sample rate factor: %d (%.10g samples per second)\n",
msr->fsdh->samprate_fact, nomsamprate);
ms_log (0, " sample rate multiplier: %d\n", msr->fsdh->samprate_mult);
if (details > 1)
{
/* Activity flags */
b = msr->fsdh->act_flags;
ms_log (0, " activity flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] Calibration signals present\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Time correction applied\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Beginning of an event, station trigger\n");
if (b & 0x08)
ms_log (0, " [Bit 3] End of an event, station detrigger\n");
if (b & 0x10)
ms_log (0, " [Bit 4] A positive leap second happened in this record\n");
if (b & 0x20)
ms_log (0, " [Bit 5] A negative leap second happened in this record\n");
if (b & 0x40)
ms_log (0, " [Bit 6] Event in progress\n");
if (b & 0x80)
ms_log (0, " [Bit 7] Undefined bit set\n");
/* I/O and clock flags */
b = msr->fsdh->io_flags;
ms_log (0, " I/O and clock flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] Station volume parity error possibly present\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Long record read (possibly no problem)\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Short record read (record padded)\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Start of time series\n");
if (b & 0x10)
ms_log (0, " [Bit 4] End of time series\n");
if (b & 0x20)
ms_log (0, " [Bit 5] Clock locked\n");
if (b & 0x40)
ms_log (0, " [Bit 6] Undefined bit set\n");
if (b & 0x80)
ms_log (0, " [Bit 7] Undefined bit set\n");
/* Data quality flags */
b = msr->fsdh->dq_flags;
ms_log (0, " data quality flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] Amplifier saturation detected\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Digitizer clipping detected\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Spikes detected\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Glitches detected\n");
if (b & 0x10)
ms_log (0, " [Bit 4] Missing/padded data present\n");
if (b & 0x20)
ms_log (0, " [Bit 5] Telemetry synchronization error\n");
if (b & 0x40)
ms_log (0, " [Bit 6] A digital filter may be charging\n");
if (b & 0x80)
ms_log (0, " [Bit 7] Time tag is questionable\n");
}
ms_log (0, " number of blockettes: %d\n", msr->fsdh->numblockettes);
ms_log (0, " time correction: %ld\n", (long int)msr->fsdh->time_correct);
ms_log (0, " data offset: %d\n", msr->fsdh->data_offset);
ms_log (0, " first blockette offset: %d\n", msr->fsdh->blockette_offset);
}
else
{
ms_log (0, "%s, %06d, %c, %d, %" PRId64 " samples, %-.10g Hz, %s\n",
srcname, msr->sequence_number, msr->dataquality,
msr->reclen, msr->samplecnt, msr->samprate, time);
}
/* Report information in the blockette chain */
if (details > 0 && msr->blkts)
{
BlktLink *cur_blkt = msr->blkts;
while (cur_blkt)
{
if (cur_blkt->blkt_type == 100)
{
struct blkt_100_s *blkt_100 = (struct blkt_100_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " actual sample rate: %.10g\n", blkt_100->samprate);
if (details > 1)
{
b = blkt_100->flags;
ms_log (0, " undefined flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
ms_log (0, " reserved bytes (3): %u,%u,%u\n",
blkt_100->reserved[0], blkt_100->reserved[1], blkt_100->reserved[2]);
}
}
else if (cur_blkt->blkt_type == 200)
{
struct blkt_200_s *blkt_200 = (struct blkt_200_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " signal amplitude: %g\n", blkt_200->amplitude);
ms_log (0, " signal period: %g\n", blkt_200->period);
ms_log (0, " background estimate: %g\n", blkt_200->background_estimate);
if (details > 1)
{
b = blkt_200->flags;
ms_log (0, " event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] 1: Dilatation wave\n");
else
ms_log (0, " [Bit 0] 0: Compression wave\n");
if (b & 0x02)
ms_log (0, " [Bit 1] 1: Units after deconvolution\n");
else
ms_log (0, " [Bit 1] 0: Units are digital counts\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Bit 0 is undetermined\n");
ms_log (0, " reserved byte: %u\n", blkt_200->reserved);
}
ms_btime2seedtimestr (&blkt_200->time, time);
ms_log (0, " signal onset time: %s\n", time);
ms_log (0, " detector name: %.24s\n", blkt_200->detector);
}
else if (cur_blkt->blkt_type == 201)
{
struct blkt_201_s *blkt_201 = (struct blkt_201_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " signal amplitude: %g\n", blkt_201->amplitude);
ms_log (0, " signal period: %g\n", blkt_201->period);
ms_log (0, " background estimate: %g\n", blkt_201->background_estimate);
b = blkt_201->flags;
ms_log (0, " event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] 1: Dilation wave\n");
else
ms_log (0, " [Bit 0] 0: Compression wave\n");
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_201->reserved);
ms_btime2seedtimestr (&blkt_201->time, time);
ms_log (0, " signal onset time: %s\n", time);
ms_log (0, " SNR values: ");
for (idx = 0; idx < 6; idx++)
ms_log (0, "%u ", blkt_201->snr_values[idx]);
ms_log (0, "\n");
ms_log (0, " loopback value: %u\n", blkt_201->loopback);
ms_log (0, " pick algorithm: %u\n", blkt_201->pick_algorithm);
ms_log (0, " detector name: %.24s\n", blkt_201->detector);
}
else if (cur_blkt->blkt_type == 300)
{
struct blkt_300_s *blkt_300 = (struct blkt_300_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_btime2seedtimestr (&blkt_300->time, time);
ms_log (0, " calibration start time: %s\n", time);
ms_log (0, " number of calibrations: %u\n", blkt_300->numcalibrations);
b = blkt_300->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] First pulse is positive\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Calibration's alternate sign\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
ms_log (0, " step duration: %u\n", blkt_300->step_duration);
ms_log (0, " interval duration: %u\n", blkt_300->interval_duration);
ms_log (0, " signal amplitude: %g\n", blkt_300->amplitude);
ms_log (0, " input signal channel: %.3s", blkt_300->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_300->reserved);
ms_log (0, " reference amplitude: %u\n", blkt_300->reference_amplitude);
ms_log (0, " coupling: %.12s\n", blkt_300->coupling);
ms_log (0, " rolloff: %.12s\n", blkt_300->rolloff);
}
else if (cur_blkt->blkt_type == 310)
{
struct blkt_310_s *blkt_310 = (struct blkt_310_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_btime2seedtimestr (&blkt_310->time, time);
ms_log (0, " calibration start time: %s\n", time);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_310->reserved1);
b = blkt_310->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
if (b & 0x10)
ms_log (0, " [Bit 4] Peak-to-peak amplitude\n");
if (b & 0x20)
ms_log (0, " [Bit 5] Zero-to-peak amplitude\n");
if (b & 0x40)
ms_log (0, " [Bit 6] RMS amplitude\n");
ms_log (0, " calibration duration: %u\n", blkt_310->duration);
ms_log (0, " signal period: %g\n", blkt_310->period);
ms_log (0, " signal amplitude: %g\n", blkt_310->amplitude);
ms_log (0, " input signal channel: %.3s", blkt_310->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_310->reserved2);
ms_log (0, " reference amplitude: %u\n", blkt_310->reference_amplitude);
ms_log (0, " coupling: %.12s\n", blkt_310->coupling);
ms_log (0, " rolloff: %.12s\n", blkt_310->rolloff);
}
else if (cur_blkt->blkt_type == 320)
{
struct blkt_320_s *blkt_320 = (struct blkt_320_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_btime2seedtimestr (&blkt_320->time, time);
ms_log (0, " calibration start time: %s\n", time);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_320->reserved1);
b = blkt_320->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
if (b & 0x10)
ms_log (0, " [Bit 4] Random amplitudes\n");
ms_log (0, " calibration duration: %u\n", blkt_320->duration);
ms_log (0, " peak-to-peak amplitude: %g\n", blkt_320->ptp_amplitude);
ms_log (0, " input signal channel: %.3s", blkt_320->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_320->reserved2);
ms_log (0, " reference amplitude: %u\n", blkt_320->reference_amplitude);
ms_log (0, " coupling: %.12s\n", blkt_320->coupling);
ms_log (0, " rolloff: %.12s\n", blkt_320->rolloff);
ms_log (0, " noise type: %.8s\n", blkt_320->noise_type);
}
else if (cur_blkt->blkt_type == 390)
{
struct blkt_390_s *blkt_390 = (struct blkt_390_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_btime2seedtimestr (&blkt_390->time, time);
ms_log (0, " calibration start time: %s\n", time);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_390->reserved1);
b = blkt_390->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
ms_log (0, " calibration duration: %u\n", blkt_390->duration);
ms_log (0, " signal amplitude: %g\n", blkt_390->amplitude);
ms_log (0, " input signal channel: %.3s", blkt_390->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_390->reserved2);
}
else if (cur_blkt->blkt_type == 395)
{
struct blkt_395_s *blkt_395 = (struct blkt_395_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_btime2seedtimestr (&blkt_395->time, time);
ms_log (0, " calibration end time: %s\n", time);
if (details > 1)
ms_log (0, " reserved bytes (2): %u,%u\n",
blkt_395->reserved[0], blkt_395->reserved[1]);
}
else if (cur_blkt->blkt_type == 400)
{
struct blkt_400_s *blkt_400 = (struct blkt_400_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " beam azimuth (degrees): %g\n", blkt_400->azimuth);
ms_log (0, " beam slowness (sec/degree): %g\n", blkt_400->slowness);
ms_log (0, " configuration: %u\n", blkt_400->configuration);
if (details > 1)
ms_log (0, " reserved bytes (2): %u,%u\n",
blkt_400->reserved[0], blkt_400->reserved[1]);
}
else if (cur_blkt->blkt_type == 405)
{
struct blkt_405_s *blkt_405 = (struct blkt_405_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s, incomplete)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " first delay value: %u\n", blkt_405->delay_values[0]);
}
else if (cur_blkt->blkt_type == 500)
{
struct blkt_500_s *blkt_500 = (struct blkt_500_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " VCO correction: %g%%\n", blkt_500->vco_correction);
ms_btime2seedtimestr (&blkt_500->time, time);
ms_log (0, " time of exception: %s\n", time);
ms_log (0, " usec: %d\n", blkt_500->usec);
ms_log (0, " reception quality: %u%%\n", blkt_500->reception_qual);
ms_log (0, " exception count: %u\n", blkt_500->exception_count);
ms_log (0, " exception type: %.16s\n", blkt_500->exception_type);
ms_log (0, " clock model: %.32s\n", blkt_500->clock_model);
ms_log (0, " clock status: %.128s\n", blkt_500->clock_status);
}
else if (cur_blkt->blkt_type == 1000)
{
struct blkt_1000_s *blkt_1000 = (struct blkt_1000_s *)cur_blkt->blktdata;
int recsize;
char order[40];
/* Calculate record size in bytes as 2^(blkt_1000->rec_len) */
recsize = (unsigned int)1 << blkt_1000->reclen;
/* Big or little endian? */
if (blkt_1000->byteorder == 0)
strncpy (order, "Little endian", sizeof (order) - 1);
else if (blkt_1000->byteorder == 1)
strncpy (order, "Big endian", sizeof (order) - 1);
else
strncpy (order, "Unknown value", sizeof (order) - 1);
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " encoding: %s (val:%u)\n",
(char *)ms_encodingstr (blkt_1000->encoding), blkt_1000->encoding);
ms_log (0, " byte order: %s (val:%u)\n",
order, blkt_1000->byteorder);
ms_log (0, " record length: %d (val:%u)\n",
recsize, blkt_1000->reclen);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_1000->reserved);
}
else if (cur_blkt->blkt_type == 1001)
{
struct blkt_1001_s *blkt_1001 = (struct blkt_1001_s *)cur_blkt->blktdata;
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " timing quality: %u%%\n", blkt_1001->timing_qual);
ms_log (0, " micro second: %d\n", blkt_1001->usec);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_1001->reserved);
ms_log (0, " frame count: %u\n", blkt_1001->framecnt);
}
else if (cur_blkt->blkt_type == 2000)
{
struct blkt_2000_s *blkt_2000 = (struct blkt_2000_s *)cur_blkt->blktdata;
char order[40];
/* Big or little endian? */
if (blkt_2000->byteorder == 0)
strncpy (order, "Little endian", sizeof (order) - 1);
else if (blkt_2000->byteorder == 1)
strncpy (order, "Big endian", sizeof (order) - 1);
else
strncpy (order, "Unknown value", sizeof (order) - 1);
ms_log (0, " BLOCKETTE %u: (%s)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
ms_log (0, " blockette length: %u\n", blkt_2000->length);
ms_log (0, " data offset: %u\n", blkt_2000->data_offset);
ms_log (0, " record number: %u\n", blkt_2000->recnum);
ms_log (0, " byte order: %s (val:%u)\n",
order, blkt_2000->byteorder);
b = blkt_2000->flags;
ms_log (0, " data flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (details > 1)
{
if (b & 0x01)
ms_log (0, " [Bit 0] 1: Stream oriented\n");
else
ms_log (0, " [Bit 0] 0: Record oriented\n");
if (b & 0x02)
ms_log (0, " [Bit 1] 1: Blockette 2000s may NOT be packaged\n");
else
ms_log (0, " [Bit 1] 0: Blockette 2000s may be packaged\n");
if (!(b & 0x04) && !(b & 0x08))
ms_log (0, " [Bits 2-3] 00: Complete blockette\n");
else if (!(b & 0x04) && (b & 0x08))
ms_log (0, " [Bits 2-3] 01: First blockette in span\n");
else if ((b & 0x04) && (b & 0x08))
ms_log (0, " [Bits 2-3] 11: Continuation blockette in span\n");
else if ((b & 0x04) && !(b & 0x08))
ms_log (0, " [Bits 2-3] 10: Final blockette in span\n");
if (!(b & 0x10) && !(b & 0x20))
ms_log (0, " [Bits 4-5] 00: Not file oriented\n");
else if (!(b & 0x10) && (b & 0x20))
ms_log (0, " [Bits 4-5] 01: First blockette of file\n");
else if ((b & 0x10) && !(b & 0x20))
ms_log (0, " [Bits 4-5] 10: Continuation of file\n");
else if ((b & 0x10) && (b & 0x20))
ms_log (0, " [Bits 4-5] 11: Last blockette of file\n");
}
ms_log (0, " number of headers: %u\n", blkt_2000->numheaders);
/* Crude display of the opaque data headers */
if (details > 1)
ms_log (0, " headers: %.*s\n",
(blkt_2000->data_offset - 15), blkt_2000->payload);
}
else
{
ms_log (0, " BLOCKETTE %u: (%s, not parsed)\n", cur_blkt->blkt_type,
ms_blktdesc (cur_blkt->blkt_type));
ms_log (0, " next blockette: %u\n", cur_blkt->next_blkt);
}
cur_blkt = cur_blkt->next;
}
}
} /* End of msr_print() */
/***************************************************************************
* msr_host_latency:
*
* Calculate the latency based on the host time in UTC accounting for
* the time covered using the number of samples and sample rate; in
* other words, the difference between the host time and the time of
* the last sample in the specified Mini-SEED record.
*
* Double precision is returned, but the true precision is dependent
* on the accuracy of the host system clock among other things.
*
* Returns seconds of latency or 0.0 on error (indistinguishable from
* 0.0 latency).
***************************************************************************/
double
msr_host_latency (MSRecord *msr)
{
double span = 0.0; /* Time covered by the samples */
double epoch; /* Current epoch time */
double latency = 0.0;
time_t tv;
if (msr == NULL)
return 0.0;
/* Calculate the time covered by the samples */
if (msr->samprate > 0.0 && msr->samplecnt > 0)
span = (1.0 / msr->samprate) * (msr->samplecnt - 1);
/* Grab UTC time according to the system clock */
epoch = (double)time (&tv);
/* Now calculate the latency */
latency = epoch - ((double)msr->starttime / HPTMODULUS) - span;
return latency;
} /* End of msr_host_latency() */
|