1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
/************************************************************************
* Routines for decoding INT16, INT32, FLOAT32, FLOAT64, STEIM1,
* STEIM2, GEOSCOPE (24bit and gain ranged), CDSN, SRO and DWWSSN
* encoded data.
*
* modified: 2017.283
************************************************************************/
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include "libmseed.h"
#include "unpackdata.h"
/* Control for printing debugging information */
int decodedebug = 0;
/* Extract bit range. Byte order agnostic & defined when used with unsigned values */
#define EXTRACTBITRANGE(VALUE, STARTBIT, LENGTH) ((VALUE >> STARTBIT) & ((1U << LENGTH) - 1))
#define MAX12 0x7FFul /* maximum 12 bit positive # */
#define MAX14 0x1FFFul /* maximum 14 bit positive # */
#define MAX16 0x7FFFul /* maximum 16 bit positive # */
#define MAX24 0x7FFFFFul /* maximum 24 bit positive # */
/************************************************************************
* msr_decode_int16:
*
* Decode 16-bit integer data and place in supplied buffer as 32-bit
* integers.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_int16 (int16_t *input, int samplecount, int32_t *output,
int outputlength, int swapflag)
{
int16_t sample;
int idx;
if (samplecount <= 0)
return 0;
if (!input || !output || outputlength <= 0)
return -1;
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
{
sample = input[idx];
if (swapflag)
ms_gswap2a (&sample);
output[idx] = (int32_t)sample;
outputlength -= sizeof (int32_t);
}
return idx;
} /* End of msr_decode_int16() */
/************************************************************************
* msr_decode_int32:
*
* Decode 32-bit integer data and place in supplied buffer as 32-bit
* integers.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_int32 (int32_t *input, int samplecount, int32_t *output,
int outputlength, int swapflag)
{
int32_t sample;
int idx;
if (samplecount <= 0)
return 0;
if (!input || !output || outputlength <= 0)
return -1;
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
{
sample = input[idx];
if (swapflag)
ms_gswap4a (&sample);
output[idx] = sample;
outputlength -= sizeof (int32_t);
}
return idx;
} /* End of msr_decode_int32() */
/************************************************************************
* msr_decode_float32:
*
* Decode 32-bit float data and place in supplied buffer as 32-bit
* floats.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_float32 (float *input, int samplecount, float *output,
int outputlength, int swapflag)
{
float sample;
int idx;
if (samplecount <= 0)
return 0;
if (!input || !output || outputlength <= 0)
return -1;
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (float); idx++)
{
memcpy (&sample, &input[idx], sizeof (float));
if (swapflag)
ms_gswap4a (&sample);
output[idx] = sample;
outputlength -= sizeof (float);
}
return idx;
} /* End of msr_decode_float32() */
/************************************************************************
* msr_decode_float64:
*
* Decode 64-bit float data and place in supplied buffer as 64-bit
* floats, aka doubles.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_float64 (double *input, int samplecount, double *output,
int outputlength, int swapflag)
{
double sample;
int idx;
if (samplecount <= 0)
return 0;
if (!input || !output || outputlength <= 0)
return -1;
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (double); idx++)
{
memcpy (&sample, &input[idx], sizeof (double));
if (swapflag)
ms_gswap8a (&sample);
output[idx] = sample;
outputlength -= sizeof (double);
}
return idx;
} /* End of msr_decode_float64() */
/************************************************************************
* msr_decode_steim1:
*
* Decode Steim1 encoded miniSEED data and place in supplied buffer
* as 32-bit integers.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_steim1 (int32_t *input, int inputlength, int samplecount,
int32_t *output, int outputlength, char *srcname,
int swapflag)
{
int32_t *outputptr = output; /* Pointer to next output sample location */
uint32_t frame[16]; /* Frame, 16 x 32-bit quantities = 64 bytes */
int32_t X0 = 0; /* Forward integration constant, aka first sample */
int32_t Xn = 0; /* Reverse integration constant, aka last sample */
int maxframes = inputlength / 64;
int frameidx;
int startnibble;
int nibble;
int widx;
int diffcount;
int idx;
union dword {
int8_t d8[4];
int16_t d16[2];
int32_t d32;
} * word;
if (inputlength <= 0)
return 0;
if (!input || !output || outputlength <= 0 || maxframes <= 0)
return -1;
if (decodedebug)
ms_log (1, "Decoding %d Steim1 frames, swapflag: %d, srcname: %s\n",
maxframes, swapflag, (srcname) ? srcname : "");
for (frameidx = 0; frameidx < maxframes && samplecount > 0; frameidx++)
{
/* Copy frame, each is 16x32-bit quantities = 64 bytes */
memcpy (frame, input + (16 * frameidx), 64);
/* Save forward integration constant (X0) and reverse integration constant (Xn)
and set the starting nibble index depending on frame. */
if (frameidx == 0)
{
if (swapflag)
{
ms_gswap4a (&frame[1]);
ms_gswap4a (&frame[2]);
}
X0 = frame[1];
Xn = frame[2];
startnibble = 3; /* First frame: skip nibbles, X0, and Xn */
if (decodedebug)
ms_log (1, "Frame %d: X0=%d Xn=%d\n", frameidx, X0, Xn);
}
else
{
startnibble = 1; /* Subsequent frames: skip nibbles */
if (decodedebug)
ms_log (1, "Frame %d\n", frameidx);
}
/* Swap 32-bit word containing the nibbles */
if (swapflag)
ms_gswap4a (&frame[0]);
/* Decode each 32-bit word according to nibble */
for (widx = startnibble; widx < 16 && samplecount > 0; widx++)
{
/* W0: the first 32-bit contains 16 x 2-bit nibbles for each word */
nibble = EXTRACTBITRANGE (frame[0], (30 - (2 * widx)), 2);
word = (union dword *)&frame[widx];
diffcount = 0;
switch (nibble)
{
case 0: /* 00: Special flag, no differences */
if (decodedebug)
ms_log (1, " W%02d: 00=special\n", widx);
break;
case 1: /* 01: Four 1-byte differences */
diffcount = 4;
if (decodedebug)
ms_log (1, " W%02d: 01=4x8b %d %d %d %d\n",
widx, word->d8[0], word->d8[1], word->d8[2], word->d8[3]);
break;
case 2: /* 10: Two 2-byte differences */
diffcount = 2;
if (swapflag)
{
ms_gswap2a (&word->d16[0]);
ms_gswap2a (&word->d16[1]);
}
if (decodedebug)
ms_log (1, " W%02d: 10=2x16b %d %d\n", widx, word->d16[0], word->d16[1]);
break;
case 3: /* 11: One 4-byte difference */
diffcount = 1;
if (swapflag)
ms_gswap4a (&word->d32);
if (decodedebug)
ms_log (1, " W%02d: 11=1x32b %d\n", widx, word->d32);
break;
} /* Done with decoding 32-bit word based on nibble */
/* Apply accumulated differences to calculate output samples */
if (diffcount > 0)
{
for (idx = 0; idx < diffcount && samplecount > 0; idx++, outputptr++)
{
if (outputptr == output) /* Ignore first difference, instead store X0 */
*outputptr = X0;
else if (diffcount == 4) /* Otherwise store difference from previous sample */
*outputptr = *(outputptr - 1) + word->d8[idx];
else if (diffcount == 2)
*outputptr = *(outputptr - 1) + word->d16[idx];
else if (diffcount == 1)
*outputptr = *(outputptr - 1) + word->d32;
samplecount--;
}
}
} /* Done looping over nibbles and 32-bit words */
} /* Done looping over frames */
/* Check data integrity by comparing last sample to Xn (reverse integration constant) */
if (outputptr != output && *(outputptr - 1) != Xn)
{
ms_log (1, "%s: Warning: Data integrity check for Steim1 failed, Last sample=%d, Xn=%d\n",
srcname, *(outputptr - 1), Xn);
}
return (outputptr - output);
} /* End of msr_decode_steim1() */
/************************************************************************
* msr_decode_steim2:
*
* Decode Steim2 encoded miniSEED data and place in supplied buffer
* as 32-bit integers.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_steim2 (int32_t *input, int inputlength, int samplecount,
int32_t *output, int outputlength, char *srcname,
int swapflag)
{
int32_t *outputptr = output; /* Pointer to next output sample location */
uint32_t frame[16]; /* Frame, 16 x 32-bit quantities = 64 bytes */
int32_t X0 = 0; /* Forward integration constant, aka first sample */
int32_t Xn = 0; /* Reverse integration constant, aka last sample */
int32_t diff[7];
int32_t semask;
int maxframes = inputlength / 64;
int frameidx;
int startnibble;
int nibble;
int widx;
int diffcount;
int dnib;
int idx;
union dword {
int8_t d8[4];
int32_t d32;
} * word;
if (inputlength <= 0)
return 0;
if (!input || !output || outputlength <= 0 || maxframes <= 0)
return -1;
if (decodedebug)
ms_log (1, "Decoding %d Steim2 frames, swapflag: %d, srcname: %s\n",
maxframes, swapflag, (srcname) ? srcname : "");
for (frameidx = 0; frameidx < maxframes && samplecount > 0; frameidx++)
{
/* Copy frame, each is 16x32-bit quantities = 64 bytes */
memcpy (frame, input + (16 * frameidx), 64);
/* Save forward integration constant (X0) and reverse integration constant (Xn)
and set the starting nibble index depending on frame. */
if (frameidx == 0)
{
if (swapflag)
{
ms_gswap4a (&frame[1]);
ms_gswap4a (&frame[2]);
}
X0 = frame[1];
Xn = frame[2];
startnibble = 3; /* First frame: skip nibbles, X0, and Xn */
if (decodedebug)
ms_log (1, "Frame %d: X0=%d Xn=%d\n", frameidx, X0, Xn);
}
else
{
startnibble = 1; /* Subsequent frames: skip nibbles */
if (decodedebug)
ms_log (1, "Frame %d\n", frameidx);
}
/* Swap 32-bit word containing the nibbles */
if (swapflag)
ms_gswap4a (&frame[0]);
/* Decode each 32-bit word according to nibble */
for (widx = startnibble; widx < 16 && samplecount > 0; widx++)
{
/* W0: the first 32-bit quantity contains 16 x 2-bit nibbles */
nibble = EXTRACTBITRANGE (frame[0], (30 - (2 * widx)), 2);
diffcount = 0;
switch (nibble)
{
case 0: /* nibble=00: Special flag, no differences */
if (decodedebug)
ms_log (1, " W%02d: 00=special\n", widx);
break;
case 1: /* nibble=01: Four 1-byte differences */
diffcount = 4;
word = (union dword *)&frame[widx];
for (idx = 0; idx < diffcount; idx++)
{
diff[idx] = word->d8[idx];
}
if (decodedebug)
ms_log (1, " W%02d: 01=4x8b %d %d %d %d\n", widx, diff[0], diff[1], diff[2], diff[3]);
break;
case 2: /* nibble=10: Must consult dnib, the high order two bits */
if (swapflag)
ms_gswap4a (&frame[widx]);
dnib = EXTRACTBITRANGE (frame[widx], 30, 2);
switch (dnib)
{
case 0: /* nibble=10, dnib=00: Error, undefined value */
ms_log (2, "%s: Impossible Steim2 dnib=00 for nibble=10\n", srcname);
return -1;
break;
case 1: /* nibble=10, dnib=01: One 30-bit difference */
diffcount = 1;
semask = 1ul << (30 - 1); /* Sign extension from bit 30 */
diff[0] = EXTRACTBITRANGE (frame[widx], 0, 30);
diff[0] = (diff[0] ^ semask) - semask;
if (decodedebug)
ms_log (1, " W%02d: 10,01=1x30b %d\n", widx, diff[0]);
break;
case 2: /* nibble=10, dnib=10: Two 15-bit differences */
diffcount = 2;
semask = 1ul << (15 - 1); /* Sign extension from bit 15 */
for (idx = 0; idx < diffcount; idx++)
{
diff[idx] = EXTRACTBITRANGE (frame[widx], (15 - idx * 15), 15);
diff[idx] = (diff[idx] ^ semask) - semask;
}
if (decodedebug)
ms_log (1, " W%02d: 10,10=2x15b %d %d\n", widx, diff[0], diff[1]);
break;
case 3: /* nibble=10, dnib=11: Three 10-bit differences */
diffcount = 3;
semask = 1ul << (10 - 1); /* Sign extension from bit 10 */
for (idx = 0; idx < diffcount; idx++)
{
diff[idx] = EXTRACTBITRANGE (frame[widx], (20 - idx * 10), 10);
diff[idx] = (diff[idx] ^ semask) - semask;
}
if (decodedebug)
ms_log (1, " W%02d: 10,11=3x10b %d %d %d\n", widx, diff[0], diff[1], diff[2]);
break;
}
break;
case 3: /* nibble=11: Must consult dnib, the high order two bits */
if (swapflag)
ms_gswap4a (&frame[widx]);
dnib = EXTRACTBITRANGE (frame[widx], 30, 2);
switch (dnib)
{
case 0: /* nibble=11, dnib=00: Five 6-bit differences */
diffcount = 5;
semask = 1ul << (6 - 1); /* Sign extension from bit 6 */
for (idx = 0; idx < diffcount; idx++)
{
diff[idx] = EXTRACTBITRANGE (frame[widx], (24 - idx * 6), 6);
diff[idx] = (diff[idx] ^ semask) - semask;
}
if (decodedebug)
ms_log (1, " W%02d: 11,00=5x6b %d %d %d %d %d\n",
widx, diff[0], diff[1], diff[2], diff[3], diff[4]);
break;
case 1: /* nibble=11, dnib=01: Six 5-bit differences */
diffcount = 6;
semask = 1ul << (5 - 1); /* Sign extension from bit 5 */
for (idx = 0; idx < diffcount; idx++)
{
diff[idx] = EXTRACTBITRANGE (frame[widx], (25 - idx * 5), 5);
diff[idx] = (diff[idx] ^ semask) - semask;
}
if (decodedebug)
ms_log (1, " W%02d: 11,01=6x5b %d %d %d %d %d %d\n",
widx, diff[0], diff[1], diff[2], diff[3], diff[4], diff[5]);
break;
case 2: /* nibble=11, dnib=10: Seven 4-bit differences */
diffcount = 7;
semask = 1ul << (4 - 1); /* Sign extension from bit 4 */
for (idx = 0; idx < diffcount; idx++)
{
diff[idx] = EXTRACTBITRANGE (frame[widx], (24 - idx * 4), 4);
diff[idx] = (diff[idx] ^ semask) - semask;
}
if (decodedebug)
ms_log (1, " W%02d: 11,10=7x4b %d %d %d %d %d %d %d\n",
widx, diff[0], diff[1], diff[2], diff[3], diff[4], diff[5], diff[6]);
break;
case 3: /* nibble=11, dnib=11: Error, undefined value */
ms_log (2, "%s: Impossible Steim2 dnib=11 for nibble=11\n", srcname);
return -1;
break;
}
break;
} /* Done with decoding 32-bit word based on nibble */
/* Apply differences to calculate output samples */
if (diffcount > 0)
{
for (idx = 0; idx < diffcount && samplecount > 0; idx++, outputptr++)
{
if (outputptr == output) /* Ignore first difference, instead store X0 */
*outputptr = X0;
else /* Otherwise store difference from previous sample */
*outputptr = *(outputptr - 1) + diff[idx];
samplecount--;
}
}
} /* Done looping over nibbles and 32-bit words */
} /* Done looping over frames */
/* Check data integrity by comparing last sample to Xn (reverse integration constant) */
if (outputptr != output && *(outputptr - 1) != Xn)
{
ms_log (1, "%s: Warning: Data integrity check for Steim2 failed, Last sample=%d, Xn=%d\n",
srcname, *(outputptr - 1), Xn);
}
return (outputptr - output);
} /* End of msr_decode_steim2() */
/* Defines for GEOSCOPE encoding */
#define GEOSCOPE_MANTISSA_MASK 0x0FFFul /* mask for mantissa */
#define GEOSCOPE_GAIN3_MASK 0x7000ul /* mask for gainrange factor */
#define GEOSCOPE_GAIN4_MASK 0xf000ul /* mask for gainrange factor */
#define GEOSCOPE_SHIFT 12 /* # bits in mantissa */
/************************************************************************
* msr_decode_geoscope:
*
* Decode GEOSCOPE gain ranged data (demultiplexed only) encoded
* miniSEED data and place in supplied buffer as 32-bit floats.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_geoscope (char *input, int samplecount, float *output,
int outputlength, int encoding,
char *srcname, int swapflag)
{
int idx = 0;
int mantissa; /* mantissa from SEED data */
int gainrange; /* gain range factor */
int exponent; /* total exponent */
int k;
uint64_t exp2val;
int16_t sint;
double dsample = 0.0;
union {
uint8_t b[4];
uint32_t i;
} sample32;
if (!input || !output)
return -1;
if (samplecount <= 0 || outputlength <= 0)
return -1;
/* Make sure we recognize this as a GEOSCOPE encoding format */
if (encoding != DE_GEOSCOPE24 &&
encoding != DE_GEOSCOPE163 &&
encoding != DE_GEOSCOPE164)
{
ms_log (2, "msr_decode_geoscope(%s): unrecognized GEOSCOPE encoding: %d\n",
srcname, encoding);
return -1;
}
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (float); idx++)
{
switch (encoding)
{
case DE_GEOSCOPE24:
sample32.i = 0;
if (swapflag)
for (k = 0; k < 3; k++)
sample32.b[2 - k] = input[k];
else
for (k = 0; k < 3; k++)
sample32.b[1 + k] = input[k];
mantissa = sample32.i;
/* Take 2's complement for mantissa for overflow */
if ((unsigned long)mantissa > MAX24)
mantissa -= 2 * (MAX24 + 1);
/* Store */
dsample = (double)mantissa;
break;
case DE_GEOSCOPE163:
memcpy (&sint, input, sizeof (int16_t));
if (swapflag)
ms_gswap2a (&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & GEOSCOPE_MANTISSA_MASK);
gainrange = (sint & GEOSCOPE_GAIN3_MASK) >> GEOSCOPE_SHIFT;
/* Exponent is just gainrange for GEOSCOPE */
exponent = gainrange;
/* Calculate sample as mantissa / 2^exponent */
exp2val = (uint64_t)1 << exponent;
dsample = ((double)(mantissa - 2048)) / exp2val;
break;
case DE_GEOSCOPE164:
memcpy (&sint, input, sizeof (int16_t));
if (swapflag)
ms_gswap2a (&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & GEOSCOPE_MANTISSA_MASK);
gainrange = (sint & GEOSCOPE_GAIN4_MASK) >> GEOSCOPE_SHIFT;
/* Exponent is just gainrange for GEOSCOPE */
exponent = gainrange;
/* Calculate sample as mantissa / 2^exponent */
exp2val = (uint64_t)1 << exponent;
dsample = ((double)(mantissa - 2048)) / exp2val;
break;
}
/* Save sample in output array */
output[idx] = (float)dsample;
outputlength -= sizeof (float);
/* Increment edata pointer depending on size */
switch (encoding)
{
case DE_GEOSCOPE24:
input += 3;
break;
case DE_GEOSCOPE163:
case DE_GEOSCOPE164:
input += 2;
break;
}
}
return idx;
} /* End of msr_decode_geoscope() */
/* Defines for CDSN encoding */
#define CDSN_MANTISSA_MASK 0x3FFFul /* mask for mantissa */
#define CDSN_GAINRANGE_MASK 0xC000ul /* mask for gainrange factor */
#define CDSN_SHIFT 14 /* # bits in mantissa */
/************************************************************************
* msr_decode_cdsn:
*
* Decode CDSN gain ranged data encoded miniSEED data and place in
* supplied buffer as 32-bit integers.
*
* Notes from original rdseed routine:
* CDSN data are compressed according to the formula
*
* sample = M * (2 exp G)
*
* where
* sample = seismic data sample
* M = mantissa; biased mantissa B is written to tape
* G = exponent of multiplier (i.e. gain range factor);
* key K is written to tape
* exp = exponentiation operation
* B = M + 8191, biased mantissa, written to tape
* K = key to multiplier exponent, written to tape
* K may have any of the values 0 - 3, as follows:
* 0 => G = 0, multiplier = 2 exp 0 = 1
* 1 => G = 2, multiplier = 2 exp 2 = 4
* 2 => G = 4, multiplier = 2 exp 4 = 16
* 3 => G = 7, multiplier = 2 exp 7 = 128
* Data are stored on tape in two bytes as follows:
* fedc ba98 7654 3210 = bit number, power of two
* KKBB BBBB BBBB BBBB = form of SEED data
* where K = key to multiplier exponent and B = biased mantissa
*
* Masks to recover key to multiplier exponent and biased mantissa
* from tape are:
* fedc ba98 7654 3210 = bit number = power of two
* 0011 1111 1111 1111 = 0x3fff = mask for biased mantissa
* 1100 0000 0000 0000 = 0xc000 = mask for gain range key
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_cdsn (int16_t *input, int samplecount, int32_t *output,
int outputlength, int swapflag)
{
int32_t idx = 0;
int32_t mantissa; /* mantissa */
int32_t gainrange; /* gain range factor */
int32_t mult = -1; /* multiplier for gain range */
uint16_t sint;
int32_t sample;
if (samplecount <= 0)
return 0;
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
{
memcpy (&sint, &input[idx], sizeof (int16_t));
if (swapflag)
ms_gswap2a (&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & CDSN_MANTISSA_MASK);
gainrange = (sint & CDSN_GAINRANGE_MASK) >> CDSN_SHIFT;
/* Determine multiplier from the gain range factor and format definition
* because shift operator is used later, these are powers of two */
if (gainrange == 0)
mult = 0;
else if (gainrange == 1)
mult = 2;
else if (gainrange == 2)
mult = 4;
else if (gainrange == 3)
mult = 7;
/* Unbias the mantissa */
mantissa -= MAX14;
/* Calculate sample from mantissa and multiplier using left shift
* mantissa << mult is equivalent to mantissa * (2 exp (mult)) */
sample = ((uint32_t)mantissa << mult);
/* Save sample in output array */
output[idx] = sample;
outputlength -= sizeof (int32_t);
}
return idx;
} /* End of msr_decode_cdsn() */
/* Defines for SRO encoding */
#define SRO_MANTISSA_MASK 0x0FFFul /* mask for mantissa */
#define SRO_GAINRANGE_MASK 0xF000ul /* mask for gainrange factor */
#define SRO_SHIFT 12 /* # bits in mantissa */
/************************************************************************
* msr_decode_sro:
*
* Decode SRO gain ranged data encoded miniSEED data and place in
* supplied buffer as 32-bit integers.
*
* Notes from original rdseed routine:
* SRO data are represented according to the formula
*
* sample = M * (b exp {[m * (G + agr)] + ar})
*
* where
* sample = seismic data sample
* M = mantissa
* G = gain range factor
* b = base to be exponentiated = 2 for SRO
* m = multiplier = -1 for SRO
* agr = term to be added to gain range factor = 0 for SRO
* ar = term to be added to [m * (gr + agr)] = 10 for SRO
* exp = exponentiation operation
* Data are stored in two bytes as follows:
* fedc ba98 7654 3210 = bit number, power of two
* GGGG MMMM MMMM MMMM = form of SEED data
* where G = gain range factor and M = mantissa
* Masks to recover gain range and mantissa:
* fedc ba98 7654 3210 = bit number = power of two
* 0000 1111 1111 1111 = 0x0fff = mask for mantissa
* 1111 0000 0000 0000 = 0xf000 = mask for gain range
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_sro (int16_t *input, int samplecount, int32_t *output,
int outputlength, char *srcname, int swapflag)
{
int32_t idx = 0;
int32_t mantissa; /* mantissa */
int32_t gainrange; /* gain range factor */
int32_t add2gr; /* added to gainrage factor */
int32_t mult; /* multiplier for gain range */
int32_t add2result; /* added to multiplied gain rage */
int32_t exponent; /* total exponent */
uint16_t sint;
int32_t sample;
if (samplecount <= 0)
return 0;
add2gr = 0;
mult = -1;
add2result = 10;
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
{
memcpy (&sint, &input[idx], sizeof (int16_t));
if (swapflag)
ms_gswap2a (&sint);
/* Recover mantissa and gain range factor */
mantissa = (sint & SRO_MANTISSA_MASK);
gainrange = (sint & SRO_GAINRANGE_MASK) >> SRO_SHIFT;
/* Take 2's complement for mantissa */
if ((unsigned long)mantissa > MAX12)
mantissa -= 2 * (MAX12 + 1);
/* Calculate exponent, SRO exponent = 0..10 */
exponent = (mult * (gainrange + add2gr)) + add2result;
if (exponent < 0 || exponent > 10)
{
ms_log (2, "msr_decode_sro(%s): SRO gain ranging exponent out of range: %d\n",
srcname, exponent);
return MS_GENERROR;
}
/* Calculate sample as mantissa * 2^exponent */
sample = mantissa * ((uint64_t)1 << exponent);
/* Save sample in output array */
output[idx] = sample;
outputlength -= sizeof (int32_t);
}
return idx;
} /* End of msr_decode_sro() */
/************************************************************************
* msr_decode_dwwssn:
*
* Decode DWWSSN encoded miniSEED data and place in supplied buffer
* as 32-bit integers.
*
* Return number of samples in output buffer on success, -1 on error.
************************************************************************/
int
msr_decode_dwwssn (int16_t *input, int samplecount, int32_t *output,
int outputlength, int swapflag)
{
int32_t idx = 0;
int32_t sample;
uint16_t sint;
if (samplecount < 0)
return 0;
for (idx = 0; idx < samplecount && outputlength >= (int)sizeof (int32_t); idx++)
{
memcpy (&sint, &input[idx], sizeof (uint16_t));
if (swapflag)
ms_gswap2a (&sint);
sample = (int32_t)sint;
/* Take 2's complement for sample */
if ((unsigned long)sample > MAX16)
sample -= 2 * (MAX16 + 1);
/* Save sample in output array */
output[idx] = sample;
outputlength -= sizeof (int32_t);
}
return idx;
} /* End of msr_decode_dwwssn() */
|