1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
|
/***************************************************************************
*
* Routines to parse Mini-SEED.
*
* Written by Chad Trabant
* IRIS Data Management Center
***************************************************************************/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "libmseed.h"
/**********************************************************************
* msr_parse:
*
* This routine will attempt to parse (detect and unpack) a Mini-SEED
* record from a specified memory buffer and populate a supplied
* MSRecord structure.
*
* If reclen is less than or equal to 0 the length of record is
* automatically detected otherwise reclen should be the correct
* record length.
*
* For auto detection of record length the record should include a
* 1000 blockette or be followed by another record header in the
* buffer.
*
* dataflag will be passed directly to msr_unpack().
*
* Return values:
* 0 : Success, populates the supplied MSRecord.
* >0 : Data record detected but not enough data is present, the
* return value is a hint of how many more bytes are needed.
* <0 : libmseed error code (listed in libmseed.h) is returned.
*********************************************************************/
int
msr_parse (char *record, int recbuflen, MSRecord **ppmsr, int reclen,
flag dataflag, flag verbose)
{
int detlen = 0;
int retcode = 0;
if (!ppmsr)
return MS_GENERROR;
if (!record)
return MS_GENERROR;
/* Sanity check: record length cannot be larger than buffer */
if (reclen > 0 && reclen > recbuflen)
{
ms_log (2, "ms_parse() Record length (%d) cannot be larger than buffer (%d)\n",
reclen, recbuflen);
return MS_GENERROR;
}
/* Autodetect the record length */
if (reclen <= 0)
{
detlen = ms_detect (record, recbuflen);
/* No data record detected */
if (detlen < 0)
{
return MS_NOTSEED;
}
/* Found record but could not determine length */
if (detlen == 0)
{
return MINRECLEN;
}
if (verbose > 2)
{
ms_log (1, "Detected record length of %d bytes\n", detlen);
}
reclen = detlen;
}
/* Check that record length is in supported range */
if (reclen < MINRECLEN || reclen > MAXRECLEN)
{
ms_log (2, "Record length is out of range: %d (allowed: %d to %d)\n",
reclen, MINRECLEN, MAXRECLEN);
return MS_OUTOFRANGE;
}
/* Check if more data is required, return hint */
if (reclen > recbuflen)
{
if (verbose > 2)
ms_log (1, "Detected %d byte record, need %d more bytes\n",
reclen, (reclen - recbuflen));
return (reclen - recbuflen);
}
/* Unpack record */
if ((retcode = msr_unpack (record, reclen, ppmsr, dataflag, verbose)) != MS_NOERROR)
{
msr_free (ppmsr);
return retcode;
}
return MS_NOERROR;
} /* End of msr_parse() */
/**********************************************************************
* msr_parse_selection:
*
* This routine wraps msr_parse() to parse and return the first record
* from a memory buffer that matches optional Selections. If the
* selections pointer is NULL the effect is to search the buffer for
* the first parsable record.
*
* The offset value specifies the starting offset in the buffer and,
* on success, the offset in the buffer to record parsed.
*
* The caller should manage the value of the offset in two ways:
*
* 1) on subsequent calls after a record has been parsed the caller
* should increment the offset by the record length returned or
* properly manipulate the record buffer pointer, buffer length and
* offset to the same effect.
*
* 2) when the end of the buffer is reached MS_GENERROR (-1) is
* returned, the caller should check the offset value against the
* record buffer length to determine when the entire buffer has been
* searched.
*
* Return values: same as msr_parse() except that MS_GENERROR is
* returned when end-of-buffer is reached.
*********************************************************************/
int
msr_parse_selection (char *recbuf, int recbuflen, int64_t *offset,
MSRecord **ppmsr, int reclen,
Selections *selections, flag dataflag, flag verbose)
{
int retval = MS_GENERROR;
int unpackretval;
flag dataswapflag = 0;
flag bigendianhost = ms_bigendianhost ();
if (!ppmsr)
return MS_GENERROR;
if (!recbuf)
return MS_GENERROR;
if (!offset)
return MS_GENERROR;
while (*offset < recbuflen)
{
retval = msr_parse (recbuf + *offset, (int)(recbuflen - *offset), ppmsr, reclen, 0, verbose);
if (retval)
{
if (verbose)
ms_log (2, "Error parsing record at offset %" PRId64 "\n", *offset);
*offset += MINRECLEN;
}
else
{
if (selections && !msr_matchselect (selections, *ppmsr, NULL))
{
*offset += (*ppmsr)->reclen;
retval = MS_GENERROR;
}
else
{
if (dataflag)
{
/* If BE host and LE data need swapping */
if (bigendianhost && (*ppmsr)->byteorder == 0)
dataswapflag = 1;
/* If LE host and BE data (or bad byte order value) need swapping */
else if (!bigendianhost && (*ppmsr)->byteorder > 0)
dataswapflag = 1;
unpackretval = msr_unpack_data (*ppmsr, dataswapflag, verbose);
if (unpackretval < 0)
return unpackretval;
else
(*ppmsr)->numsamples = unpackretval;
}
break;
}
}
}
return retval;
} /* End of msr_parse_selection() */
/********************************************************************
* ms_detect:
*
* Determine SEED data record length with the following steps:
*
* 1) determine that the buffer contains a SEED data record by
* verifying known signatures (fields with known limited values)
*
* 2) search the record up to recbuflen bytes for a 1000 blockette.
*
* 3) If no blockette 1000 is found search at MINRECLEN-byte offsets
* for the fixed section of the next header or blank/noise record,
* thereby implying the record length.
*
* Returns:
* -1 : data record not detected or error
* 0 : data record detected but could not determine length
* >0 : size of the record in bytes
*********************************************************************/
int
ms_detect (const char *record, int recbuflen)
{
uint16_t blkt_offset; /* Byte offset for next blockette */
uint8_t swapflag = 0; /* Byte swapping flag */
uint8_t foundlen = 0; /* Found record length */
int32_t reclen = -1; /* Size of record in bytes */
uint16_t blkt_type;
uint16_t next_blkt;
struct fsdh_s *fsdh;
struct blkt_1000_s *blkt_1000;
const char *nextfsdh;
/* Buffer must be at least 48 bytes (the fixed section) */
if (recbuflen < 48)
return -1;
/* Check for valid fixed section of header */
if (!MS_ISVALIDHEADER (record))
return -1;
fsdh = (struct fsdh_s *)record;
/* Check to see if byte swapping is needed by checking for sane year and day */
if (!MS_ISVALIDYEARDAY (fsdh->start_time.year, fsdh->start_time.day))
swapflag = 1;
blkt_offset = fsdh->blockette_offset;
/* Swap order of blkt_offset if needed */
if (swapflag)
ms_gswap2 (&blkt_offset);
/* Loop through blockettes as long as number is non-zero and viable */
while (blkt_offset != 0 &&
blkt_offset <= recbuflen)
{
memcpy (&blkt_type, record + blkt_offset, 2);
memcpy (&next_blkt, record + blkt_offset + 2, 2);
if (swapflag)
{
ms_gswap2 (&blkt_type);
ms_gswap2 (&next_blkt);
}
/* Found a 1000 blockette, not truncated */
if (blkt_type == 1000 &&
(int)(blkt_offset + 4 + sizeof (struct blkt_1000_s)) <= recbuflen)
{
blkt_1000 = (struct blkt_1000_s *)(record + blkt_offset + 4);
foundlen = 1;
/* Calculate record size in bytes as 2^(blkt_1000->reclen) */
reclen = (unsigned int)1 << blkt_1000->reclen;
break;
}
/* Safety check for invalid offset */
if (next_blkt != 0 && (next_blkt < 4 || (next_blkt - 4) <= blkt_offset))
{
ms_log (2, "Invalid blockette offset (%d) less than or equal to current offset (%d)\n",
next_blkt, blkt_offset);
return -1;
}
blkt_offset = next_blkt;
}
/* If record length was not determined by a 1000 blockette scan the buffer
* and search for the next record */
if (reclen == -1)
{
nextfsdh = record + MINRECLEN;
/* Check for record header or blank/noise record at MINRECLEN byte offsets */
while (((nextfsdh - record) + 48) < recbuflen)
{
if (MS_ISVALIDHEADER (nextfsdh) || MS_ISVALIDBLANK (nextfsdh))
{
foundlen = 1;
reclen = nextfsdh - record;
break;
}
nextfsdh += MINRECLEN;
}
}
if (!foundlen)
return 0;
else
return reclen;
} /* End of ms_detect() */
/***************************************************************************
* ms_parse_raw:
*
* Parse and verify a SEED data record header (fixed section and
* blockettes) at the lowest level, printing error messages for
* invalid header values and optionally print raw header values. The
* memory at 'record' is assumed to be a Mini-SEED record. Not every
* possible test is performed, common errors and those causing
* libmseed parsing to fail should be detected.
*
* The 'details' argument is interpreted as follows:
*
* details:
* 0 = only print error messages for invalid header fields
* 1 = print basic fields in addition to invalid field errors
* 2 = print all fields in addition to invalid field errors
*
* The 'swapflag' argument is interpreted as follows:
*
* swapflag:
* 1 = swap multibyte quantities
* 0 = do no swapping
* -1 = autodetect byte order using year test, swap if needed
*
* Any byte swapping performed by this routine is applied directly to
* the memory reference by the record pointer.
*
* This routine is primarily intended to diagnose invalid Mini-SEED headers.
*
* Returns 0 when no errors were detected or a positive count of
* errors detected.
***************************************************************************/
int
ms_parse_raw (char *record, int maxreclen, flag details, flag swapflag)
{
struct fsdh_s *fsdh;
double nomsamprate;
char srcname[50];
char *X;
char b;
int retval = 0;
int b1000encoding = -1;
int b1000reclen = -1;
int endofblockettes = -1;
int idx;
if (!record)
return 1;
/* Generate a source name string */
srcname[0] = '\0';
ms_recsrcname (record, srcname, 1);
fsdh = (struct fsdh_s *)record;
/* Check to see if byte swapping is needed by testing the year and day */
if (swapflag == -1 && !MS_ISVALIDYEARDAY (fsdh->start_time.year, fsdh->start_time.day))
swapflag = 1;
else
swapflag = 0;
if (details > 1)
{
if (swapflag == 1)
ms_log (0, "Swapping multi-byte quantities in header\n");
else
ms_log (0, "Not swapping multi-byte quantities in header\n");
}
/* Swap byte order */
if (swapflag)
{
MS_SWAPBTIME (&fsdh->start_time);
ms_gswap2 (&fsdh->numsamples);
ms_gswap2 (&fsdh->samprate_fact);
ms_gswap2 (&fsdh->samprate_mult);
ms_gswap4 (&fsdh->time_correct);
ms_gswap2 (&fsdh->data_offset);
ms_gswap2 (&fsdh->blockette_offset);
}
/* Validate fixed section header fields */
X = record; /* Pointer of convenience */
/* Check record sequence number, 6 ASCII digits */
if (!isdigit ((int)*(X)) || !isdigit ((int)*(X + 1)) ||
!isdigit ((int)*(X + 2)) || !isdigit ((int)*(X + 3)) ||
!isdigit ((int)*(X + 4)) || !isdigit ((int)*(X + 5)))
{
ms_log (2, "%s: Invalid sequence number: '%c%c%c%c%c%c'\n", srcname, X, X + 1, X + 2, X + 3, X + 4, X + 5);
retval++;
}
/* Check header/quality indicator */
if (!MS_ISDATAINDICATOR (*(X + 6)))
{
ms_log (2, "%s: Invalid header indicator (DRQM): '%c'\n", srcname, X + 6);
retval++;
}
/* Check reserved byte, space or NULL */
if (!(*(X + 7) == ' ' || *(X + 7) == '\0'))
{
ms_log (2, "%s: Invalid fixed section reserved byte (Space): '%c'\n", srcname, X + 7);
retval++;
}
/* Check station code, 5 alphanumerics or spaces */
if (!(isalnum ((unsigned char)*(X + 8)) || *(X + 8) == ' ') ||
!(isalnum ((unsigned char)*(X + 9)) || *(X + 9) == ' ') ||
!(isalnum ((unsigned char)*(X + 10)) || *(X + 10) == ' ') ||
!(isalnum ((unsigned char)*(X + 11)) || *(X + 11) == ' ') ||
!(isalnum ((unsigned char)*(X + 12)) || *(X + 12) == ' '))
{
ms_log (2, "%s: Invalid station code: '%c%c%c%c%c'\n", srcname, X + 8, X + 9, X + 10, X + 11, X + 12);
retval++;
}
/* Check location ID, 2 alphanumerics or spaces */
if (!(isalnum ((unsigned char)*(X + 13)) || *(X + 13) == ' ') ||
!(isalnum ((unsigned char)*(X + 14)) || *(X + 14) == ' '))
{
ms_log (2, "%s: Invalid location ID: '%c%c'\n", srcname, X + 13, X + 14);
retval++;
}
/* Check channel codes, 3 alphanumerics or spaces */
if (!(isalnum ((unsigned char)*(X + 15)) || *(X + 15) == ' ') ||
!(isalnum ((unsigned char)*(X + 16)) || *(X + 16) == ' ') ||
!(isalnum ((unsigned char)*(X + 17)) || *(X + 17) == ' '))
{
ms_log (2, "%s: Invalid channel codes: '%c%c%c'\n", srcname, X + 15, X + 16, X + 17);
retval++;
}
/* Check network code, 2 alphanumerics or spaces */
if (!(isalnum ((unsigned char)*(X + 18)) || *(X + 18) == ' ') ||
!(isalnum ((unsigned char)*(X + 19)) || *(X + 19) == ' '))
{
ms_log (2, "%s: Invalid network code: '%c%c'\n", srcname, X + 18, X + 19);
retval++;
}
/* Check start time fields */
if (fsdh->start_time.year < 1900 || fsdh->start_time.year > 2100)
{
ms_log (2, "%s: Unlikely start year (1900-2100): '%d'\n", srcname, fsdh->start_time.year);
retval++;
}
if (fsdh->start_time.day < 1 || fsdh->start_time.day > 366)
{
ms_log (2, "%s: Invalid start day (1-366): '%d'\n", srcname, fsdh->start_time.day);
retval++;
}
if (fsdh->start_time.hour > 23)
{
ms_log (2, "%s: Invalid start hour (0-23): '%d'\n", srcname, fsdh->start_time.hour);
retval++;
}
if (fsdh->start_time.min > 59)
{
ms_log (2, "%s: Invalid start minute (0-59): '%d'\n", srcname, fsdh->start_time.min);
retval++;
}
if (fsdh->start_time.sec > 60)
{
ms_log (2, "%s: Invalid start second (0-60): '%d'\n", srcname, fsdh->start_time.sec);
retval++;
}
if (fsdh->start_time.fract > 9999)
{
ms_log (2, "%s: Invalid start fractional seconds (0-9999): '%d'\n", srcname, fsdh->start_time.fract);
retval++;
}
/* Check number of samples, max samples in 4096-byte Steim-2 encoded record: 6601 */
if (fsdh->numsamples > 20000)
{
ms_log (2, "%s: Unlikely number of samples (>20000): '%d'\n", srcname, fsdh->numsamples);
retval++;
}
/* Sanity check that there is space for blockettes when both data and blockettes are present */
if (fsdh->numsamples > 0 && fsdh->numblockettes > 0 && fsdh->data_offset <= fsdh->blockette_offset)
{
ms_log (2, "%s: No space for %d blockettes, data offset: %d, blockette offset: %d\n", srcname,
fsdh->numblockettes, fsdh->data_offset, fsdh->blockette_offset);
retval++;
}
/* Print raw header details */
if (details >= 1)
{
/* Determine nominal sample rate */
nomsamprate = ms_nomsamprate (fsdh->samprate_fact, fsdh->samprate_mult);
/* Print header values */
ms_log (0, "RECORD -- %s\n", srcname);
ms_log (0, " sequence number: '%c%c%c%c%c%c'\n", fsdh->sequence_number[0], fsdh->sequence_number[1], fsdh->sequence_number[2],
fsdh->sequence_number[3], fsdh->sequence_number[4], fsdh->sequence_number[5]);
ms_log (0, " data quality indicator: '%c'\n", fsdh->dataquality);
if (details > 0)
ms_log (0, " reserved: '%c'\n", fsdh->reserved);
ms_log (0, " station code: '%c%c%c%c%c'\n", fsdh->station[0], fsdh->station[1], fsdh->station[2], fsdh->station[3], fsdh->station[4]);
ms_log (0, " location ID: '%c%c'\n", fsdh->location[0], fsdh->location[1]);
ms_log (0, " channel codes: '%c%c%c'\n", fsdh->channel[0], fsdh->channel[1], fsdh->channel[2]);
ms_log (0, " network code: '%c%c'\n", fsdh->network[0], fsdh->network[1]);
ms_log (0, " start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", fsdh->start_time.year, fsdh->start_time.day,
fsdh->start_time.hour, fsdh->start_time.min, fsdh->start_time.sec, fsdh->start_time.fract, fsdh->start_time.unused);
ms_log (0, " number of samples: %d\n", fsdh->numsamples);
ms_log (0, " sample rate factor: %d (%.10g samples per second)\n",
fsdh->samprate_fact, nomsamprate);
ms_log (0, " sample rate multiplier: %d\n", fsdh->samprate_mult);
/* Print flag details if requested */
if (details > 1)
{
/* Activity flags */
b = fsdh->act_flags;
ms_log (0, " activity flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] Calibration signals present\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Time correction applied\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Beginning of an event, station trigger\n");
if (b & 0x08)
ms_log (0, " [Bit 3] End of an event, station detrigger\n");
if (b & 0x10)
ms_log (0, " [Bit 4] A positive leap second happened in this record\n");
if (b & 0x20)
ms_log (0, " [Bit 5] A negative leap second happened in this record\n");
if (b & 0x40)
ms_log (0, " [Bit 6] Event in progress\n");
if (b & 0x80)
ms_log (0, " [Bit 7] Undefined bit set\n");
/* I/O and clock flags */
b = fsdh->io_flags;
ms_log (0, " I/O and clock flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] Station volume parity error possibly present\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Long record read (possibly no problem)\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Short record read (record padded)\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Start of time series\n");
if (b & 0x10)
ms_log (0, " [Bit 4] End of time series\n");
if (b & 0x20)
ms_log (0, " [Bit 5] Clock locked\n");
if (b & 0x40)
ms_log (0, " [Bit 6] Undefined bit set\n");
if (b & 0x80)
ms_log (0, " [Bit 7] Undefined bit set\n");
/* Data quality flags */
b = fsdh->dq_flags;
ms_log (0, " data quality flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] Amplifier saturation detected\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Digitizer clipping detected\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Spikes detected\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Glitches detected\n");
if (b & 0x10)
ms_log (0, " [Bit 4] Missing/padded data present\n");
if (b & 0x20)
ms_log (0, " [Bit 5] Telemetry synchronization error\n");
if (b & 0x40)
ms_log (0, " [Bit 6] A digital filter may be charging\n");
if (b & 0x80)
ms_log (0, " [Bit 7] Time tag is questionable\n");
}
ms_log (0, " number of blockettes: %d\n", fsdh->numblockettes);
ms_log (0, " time correction: %ld\n", (long int)fsdh->time_correct);
ms_log (0, " data offset: %d\n", fsdh->data_offset);
ms_log (0, " first blockette offset: %d\n", fsdh->blockette_offset);
} /* Done printing raw header details */
/* Validate and report information in the blockette chain */
if (fsdh->blockette_offset > 46 && fsdh->blockette_offset < maxreclen)
{
int blkt_offset = fsdh->blockette_offset;
int blkt_count = 0;
int blkt_length;
uint16_t blkt_type;
uint16_t next_blkt;
char *blkt_desc;
/* Traverse blockette chain */
while (blkt_offset != 0 && blkt_offset < maxreclen)
{
/* Every blockette has a similar 4 byte header: type and next */
memcpy (&blkt_type, record + blkt_offset, 2);
memcpy (&next_blkt, record + blkt_offset + 2, 2);
if (swapflag)
{
ms_gswap2 (&blkt_type);
ms_gswap2 (&next_blkt);
}
/* Print common header fields */
if (details >= 1)
{
blkt_desc = ms_blktdesc (blkt_type);
ms_log (0, " BLOCKETTE %u: (%s)\n", blkt_type, (blkt_desc) ? blkt_desc : "Unknown");
ms_log (0, " next blockette: %u\n", next_blkt);
}
blkt_length = ms_blktlen (blkt_type, record + blkt_offset, swapflag);
if (blkt_length == 0)
{
ms_log (2, "%s: Unknown blockette length for type %d\n", srcname, blkt_type);
retval++;
}
/* Track end of blockette chain */
endofblockettes = blkt_offset + blkt_length - 1;
/* Sanity check that the blockette is contained in the record */
if (endofblockettes > maxreclen)
{
ms_log (2, "%s: Blockette type %d at offset %d with length %d does not fix in record (%d)\n",
srcname, blkt_type, blkt_offset, blkt_length, maxreclen);
retval++;
break;
}
if (blkt_type == 100)
{
struct blkt_100_s *blkt_100 = (struct blkt_100_s *)(record + blkt_offset + 4);
if (swapflag)
ms_gswap4 (&blkt_100->samprate);
if (details >= 1)
{
ms_log (0, " actual sample rate: %.10g\n", blkt_100->samprate);
if (details > 1)
{
b = blkt_100->flags;
ms_log (0, " undefined flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
ms_log (0, " reserved bytes (3): %u,%u,%u\n",
blkt_100->reserved[0], blkt_100->reserved[1], blkt_100->reserved[2]);
}
}
}
else if (blkt_type == 200)
{
struct blkt_200_s *blkt_200 = (struct blkt_200_s *)(record + blkt_offset + 4);
if (swapflag)
{
ms_gswap4 (&blkt_200->amplitude);
ms_gswap4 (&blkt_200->period);
ms_gswap4 (&blkt_200->background_estimate);
MS_SWAPBTIME (&blkt_200->time);
}
if (details >= 1)
{
ms_log (0, " signal amplitude: %g\n", blkt_200->amplitude);
ms_log (0, " signal period: %g\n", blkt_200->period);
ms_log (0, " background estimate: %g\n", blkt_200->background_estimate);
if (details > 1)
{
b = blkt_200->flags;
ms_log (0, " event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] 1: Dilatation wave\n");
else
ms_log (0, " [Bit 0] 0: Compression wave\n");
if (b & 0x02)
ms_log (0, " [Bit 1] 1: Units after deconvolution\n");
else
ms_log (0, " [Bit 1] 0: Units are digital counts\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Bit 0 is undetermined\n");
ms_log (0, " reserved byte: %u\n", blkt_200->reserved);
}
ms_log (0, " signal onset time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_200->time.year, blkt_200->time.day,
blkt_200->time.hour, blkt_200->time.min, blkt_200->time.sec, blkt_200->time.fract, blkt_200->time.unused);
ms_log (0, " detector name: %.24s\n", blkt_200->detector);
}
}
else if (blkt_type == 201)
{
struct blkt_201_s *blkt_201 = (struct blkt_201_s *)(record + blkt_offset + 4);
if (swapflag)
{
ms_gswap4 (&blkt_201->amplitude);
ms_gswap4 (&blkt_201->period);
ms_gswap4 (&blkt_201->background_estimate);
MS_SWAPBTIME (&blkt_201->time);
}
if (details >= 1)
{
ms_log (0, " signal amplitude: %g\n", blkt_201->amplitude);
ms_log (0, " signal period: %g\n", blkt_201->period);
ms_log (0, " background estimate: %g\n", blkt_201->background_estimate);
b = blkt_201->flags;
ms_log (0, " event detection flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] 1: Dilation wave\n");
else
ms_log (0, " [Bit 0] 0: Compression wave\n");
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_201->reserved);
ms_log (0, " signal onset time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_201->time.year, blkt_201->time.day,
blkt_201->time.hour, blkt_201->time.min, blkt_201->time.sec, blkt_201->time.fract, blkt_201->time.unused);
ms_log (0, " SNR values: ");
for (idx = 0; idx < 6; idx++)
ms_log (0, "%u ", blkt_201->snr_values[idx]);
ms_log (0, "\n");
ms_log (0, " loopback value: %u\n", blkt_201->loopback);
ms_log (0, " pick algorithm: %u\n", blkt_201->pick_algorithm);
ms_log (0, " detector name: %.24s\n", blkt_201->detector);
}
}
else if (blkt_type == 300)
{
struct blkt_300_s *blkt_300 = (struct blkt_300_s *)(record + blkt_offset + 4);
if (swapflag)
{
MS_SWAPBTIME (&blkt_300->time);
ms_gswap4 (&blkt_300->step_duration);
ms_gswap4 (&blkt_300->interval_duration);
ms_gswap4 (&blkt_300->amplitude);
ms_gswap4 (&blkt_300->reference_amplitude);
}
if (details >= 1)
{
ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_300->time.year, blkt_300->time.day,
blkt_300->time.hour, blkt_300->time.min, blkt_300->time.sec, blkt_300->time.fract, blkt_300->time.unused);
ms_log (0, " number of calibrations: %u\n", blkt_300->numcalibrations);
b = blkt_300->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x01)
ms_log (0, " [Bit 0] First pulse is positive\n");
if (b & 0x02)
ms_log (0, " [Bit 1] Calibration's alternate sign\n");
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
ms_log (0, " step duration: %u\n", blkt_300->step_duration);
ms_log (0, " interval duration: %u\n", blkt_300->interval_duration);
ms_log (0, " signal amplitude: %g\n", blkt_300->amplitude);
ms_log (0, " input signal channel: %.3s", blkt_300->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_300->reserved);
ms_log (0, " reference amplitude: %u\n", blkt_300->reference_amplitude);
ms_log (0, " coupling: %.12s\n", blkt_300->coupling);
ms_log (0, " rolloff: %.12s\n", blkt_300->rolloff);
}
}
else if (blkt_type == 310)
{
struct blkt_310_s *blkt_310 = (struct blkt_310_s *)(record + blkt_offset + 4);
if (swapflag)
{
MS_SWAPBTIME (&blkt_310->time);
ms_gswap4 (&blkt_310->duration);
ms_gswap4 (&blkt_310->period);
ms_gswap4 (&blkt_310->amplitude);
ms_gswap4 (&blkt_310->reference_amplitude);
}
if (details >= 1)
{
ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_310->time.year, blkt_310->time.day,
blkt_310->time.hour, blkt_310->time.min, blkt_310->time.sec, blkt_310->time.fract, blkt_310->time.unused);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_310->reserved1);
b = blkt_310->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
if (b & 0x10)
ms_log (0, " [Bit 4] Peak-to-peak amplitude\n");
if (b & 0x20)
ms_log (0, " [Bit 5] Zero-to-peak amplitude\n");
if (b & 0x40)
ms_log (0, " [Bit 6] RMS amplitude\n");
ms_log (0, " calibration duration: %u\n", blkt_310->duration);
ms_log (0, " signal period: %g\n", blkt_310->period);
ms_log (0, " signal amplitude: %g\n", blkt_310->amplitude);
ms_log (0, " input signal channel: %.3s", blkt_310->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_310->reserved2);
ms_log (0, " reference amplitude: %u\n", blkt_310->reference_amplitude);
ms_log (0, " coupling: %.12s\n", blkt_310->coupling);
ms_log (0, " rolloff: %.12s\n", blkt_310->rolloff);
}
}
else if (blkt_type == 320)
{
struct blkt_320_s *blkt_320 = (struct blkt_320_s *)(record + blkt_offset + 4);
if (swapflag)
{
MS_SWAPBTIME (&blkt_320->time);
ms_gswap4 (&blkt_320->duration);
ms_gswap4 (&blkt_320->ptp_amplitude);
ms_gswap4 (&blkt_320->reference_amplitude);
}
if (details >= 1)
{
ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_320->time.year, blkt_320->time.day,
blkt_320->time.hour, blkt_320->time.min, blkt_320->time.sec, blkt_320->time.fract, blkt_320->time.unused);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_320->reserved1);
b = blkt_320->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
if (b & 0x10)
ms_log (0, " [Bit 4] Random amplitudes\n");
ms_log (0, " calibration duration: %u\n", blkt_320->duration);
ms_log (0, " peak-to-peak amplitude: %g\n", blkt_320->ptp_amplitude);
ms_log (0, " input signal channel: %.3s", blkt_320->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_320->reserved2);
ms_log (0, " reference amplitude: %u\n", blkt_320->reference_amplitude);
ms_log (0, " coupling: %.12s\n", blkt_320->coupling);
ms_log (0, " rolloff: %.12s\n", blkt_320->rolloff);
ms_log (0, " noise type: %.8s\n", blkt_320->noise_type);
}
}
else if (blkt_type == 390)
{
struct blkt_390_s *blkt_390 = (struct blkt_390_s *)(record + blkt_offset + 4);
if (swapflag)
{
MS_SWAPBTIME (&blkt_390->time);
ms_gswap4 (&blkt_390->duration);
ms_gswap4 (&blkt_390->amplitude);
}
if (details >= 1)
{
ms_log (0, " calibration start time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_390->time.year, blkt_390->time.day,
blkt_390->time.hour, blkt_390->time.min, blkt_390->time.sec, blkt_390->time.fract, blkt_390->time.unused);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_390->reserved1);
b = blkt_390->flags;
ms_log (0, " calibration flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (b & 0x04)
ms_log (0, " [Bit 2] Calibration was automatic\n");
if (b & 0x08)
ms_log (0, " [Bit 3] Calibration continued from previous record(s)\n");
ms_log (0, " calibration duration: %u\n", blkt_390->duration);
ms_log (0, " signal amplitude: %g\n", blkt_390->amplitude);
ms_log (0, " input signal channel: %.3s", blkt_390->input_channel);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_390->reserved2);
}
}
else if (blkt_type == 395)
{
struct blkt_395_s *blkt_395 = (struct blkt_395_s *)(record + blkt_offset + 4);
if (swapflag)
{
MS_SWAPBTIME (&blkt_395->time);
}
if (details >= 1)
{
ms_log (0, " calibration end time: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_395->time.year, blkt_395->time.day,
blkt_395->time.hour, blkt_395->time.min, blkt_395->time.sec, blkt_395->time.fract, blkt_395->time.unused);
if (details > 1)
ms_log (0, " reserved bytes (2): %u,%u\n",
blkt_395->reserved[0], blkt_395->reserved[1]);
}
}
else if (blkt_type == 400)
{
struct blkt_400_s *blkt_400 = (struct blkt_400_s *)(record + blkt_offset + 4);
if (swapflag)
{
ms_gswap4 (&blkt_400->azimuth);
ms_gswap4 (&blkt_400->slowness);
ms_gswap4 (&blkt_400->configuration);
}
if (details >= 1)
{
ms_log (0, " beam azimuth (degrees): %g\n", blkt_400->azimuth);
ms_log (0, " beam slowness (sec/degree): %g\n", blkt_400->slowness);
ms_log (0, " configuration: %u\n", blkt_400->configuration);
if (details > 1)
ms_log (0, " reserved bytes (2): %u,%u\n",
blkt_400->reserved[0], blkt_400->reserved[1]);
}
}
else if (blkt_type == 405)
{
struct blkt_405_s *blkt_405 = (struct blkt_405_s *)(record + blkt_offset + 4);
uint16_t firstvalue = blkt_405->delay_values[0]; /* Work on a private copy */
if (swapflag)
ms_gswap2 (&firstvalue);
if (details >= 1)
ms_log (0, " first delay value: %u\n", firstvalue);
}
else if (blkt_type == 500)
{
struct blkt_500_s *blkt_500 = (struct blkt_500_s *)(record + blkt_offset + 4);
if (swapflag)
{
ms_gswap4 (&blkt_500->vco_correction);
MS_SWAPBTIME (&blkt_500->time);
ms_gswap4 (&blkt_500->exception_count);
}
if (details >= 1)
{
ms_log (0, " VCO correction: %g%%\n", blkt_500->vco_correction);
ms_log (0, " time of exception: %d,%d,%d:%d:%d.%04d (unused: %d)\n", blkt_500->time.year, blkt_500->time.day,
blkt_500->time.hour, blkt_500->time.min, blkt_500->time.sec, blkt_500->time.fract, blkt_500->time.unused);
ms_log (0, " usec: %d\n", blkt_500->usec);
ms_log (0, " reception quality: %u%%\n", blkt_500->reception_qual);
ms_log (0, " exception count: %u\n", blkt_500->exception_count);
ms_log (0, " exception type: %.16s\n", blkt_500->exception_type);
ms_log (0, " clock model: %.32s\n", blkt_500->clock_model);
ms_log (0, " clock status: %.128s\n", blkt_500->clock_status);
}
}
else if (blkt_type == 1000)
{
struct blkt_1000_s *blkt_1000 = (struct blkt_1000_s *)(record + blkt_offset + 4);
char order[40];
/* Calculate record size in bytes as 2^(blkt_1000->rec_len) */
b1000reclen = (unsigned int)1 << blkt_1000->reclen;
/* Big or little endian? */
if (blkt_1000->byteorder == 0)
strncpy (order, "Little endian", sizeof (order) - 1);
else if (blkt_1000->byteorder == 1)
strncpy (order, "Big endian", sizeof (order) - 1);
else
strncpy (order, "Unknown value", sizeof (order) - 1);
if (details >= 1)
{
ms_log (0, " encoding: %s (val:%u)\n",
(char *)ms_encodingstr (blkt_1000->encoding), blkt_1000->encoding);
ms_log (0, " byte order: %s (val:%u)\n",
order, blkt_1000->byteorder);
ms_log (0, " record length: %d (val:%u)\n",
b1000reclen, blkt_1000->reclen);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_1000->reserved);
}
/* Save encoding format */
b1000encoding = blkt_1000->encoding;
/* Sanity check encoding format */
if (!(b1000encoding >= 0 && b1000encoding <= 5) &&
!(b1000encoding >= 10 && b1000encoding <= 19) &&
!(b1000encoding >= 30 && b1000encoding <= 33))
{
ms_log (2, "%s: Blockette 1000 encoding format invalid (0-5,10-19,30-33): %d\n", srcname, b1000encoding);
retval++;
}
/* Sanity check byte order flag */
if (blkt_1000->byteorder != 0 && blkt_1000->byteorder != 1)
{
ms_log (2, "%s: Blockette 1000 byte order flag invalid (0 or 1): %d\n", srcname, blkt_1000->byteorder);
retval++;
}
}
else if (blkt_type == 1001)
{
struct blkt_1001_s *blkt_1001 = (struct blkt_1001_s *)(record + blkt_offset + 4);
if (details >= 1)
{
ms_log (0, " timing quality: %u%%\n", blkt_1001->timing_qual);
ms_log (0, " micro second: %d\n", blkt_1001->usec);
if (details > 1)
ms_log (0, " reserved byte: %u\n", blkt_1001->reserved);
ms_log (0, " frame count: %u\n", blkt_1001->framecnt);
}
}
else if (blkt_type == 2000)
{
struct blkt_2000_s *blkt_2000 = (struct blkt_2000_s *)(record + blkt_offset + 4);
char order[40];
if (swapflag)
{
ms_gswap2 (&blkt_2000->length);
ms_gswap2 (&blkt_2000->data_offset);
ms_gswap4 (&blkt_2000->recnum);
}
/* Big or little endian? */
if (blkt_2000->byteorder == 0)
strncpy (order, "Little endian", sizeof (order) - 1);
else if (blkt_2000->byteorder == 1)
strncpy (order, "Big endian", sizeof (order) - 1);
else
strncpy (order, "Unknown value", sizeof (order) - 1);
if (details >= 1)
{
ms_log (0, " blockette length: %u\n", blkt_2000->length);
ms_log (0, " data offset: %u\n", blkt_2000->data_offset);
ms_log (0, " record number: %u\n", blkt_2000->recnum);
ms_log (0, " byte order: %s (val:%u)\n",
order, blkt_2000->byteorder);
b = blkt_2000->flags;
ms_log (0, " data flags: [%u%u%u%u%u%u%u%u] 8 bits\n",
bit (b, 0x01), bit (b, 0x02), bit (b, 0x04), bit (b, 0x08),
bit (b, 0x10), bit (b, 0x20), bit (b, 0x40), bit (b, 0x80));
if (details > 1)
{
if (b & 0x01)
ms_log (0, " [Bit 0] 1: Stream oriented\n");
else
ms_log (0, " [Bit 0] 0: Record oriented\n");
if (b & 0x02)
ms_log (0, " [Bit 1] 1: Blockette 2000s may NOT be packaged\n");
else
ms_log (0, " [Bit 1] 0: Blockette 2000s may be packaged\n");
if (!(b & 0x04) && !(b & 0x08))
ms_log (0, " [Bits 2-3] 00: Complete blockette\n");
else if (!(b & 0x04) && (b & 0x08))
ms_log (0, " [Bits 2-3] 01: First blockette in span\n");
else if ((b & 0x04) && (b & 0x08))
ms_log (0, " [Bits 2-3] 11: Continuation blockette in span\n");
else if ((b & 0x04) && !(b & 0x08))
ms_log (0, " [Bits 2-3] 10: Final blockette in span\n");
if (!(b & 0x10) && !(b & 0x20))
ms_log (0, " [Bits 4-5] 00: Not file oriented\n");
else if (!(b & 0x10) && (b & 0x20))
ms_log (0, " [Bits 4-5] 01: First blockette of file\n");
else if ((b & 0x10) && !(b & 0x20))
ms_log (0, " [Bits 4-5] 10: Continuation of file\n");
else if ((b & 0x10) && (b & 0x20))
ms_log (0, " [Bits 4-5] 11: Last blockette of file\n");
}
ms_log (0, " number of headers: %u\n", blkt_2000->numheaders);
/* Crude display of the opaque data headers */
if (details > 1)
ms_log (0, " headers: %.*s\n",
(blkt_2000->data_offset - 15), blkt_2000->payload);
}
}
else
{
ms_log (2, "%s: Unrecognized blockette type: %d\n", srcname, blkt_type);
retval++;
}
/* Sanity check the next blockette offset */
if (next_blkt && next_blkt <= endofblockettes)
{
ms_log (2, "%s: Next blockette offset (%d) is within current blockette ending at byte %d\n",
srcname, next_blkt, endofblockettes);
blkt_offset = 0;
}
else
{
blkt_offset = next_blkt;
}
blkt_count++;
} /* End of looping through blockettes */
/* Check that the blockette offset is within the maximum record size */
if (blkt_offset > maxreclen)
{
ms_log (2, "%s: Blockette offset (%d) beyond maximum record length (%d)\n", srcname, blkt_offset, maxreclen);
retval++;
}
/* Check that the data and blockette offsets are within the record */
if (b1000reclen && fsdh->data_offset > b1000reclen)
{
ms_log (2, "%s: Data offset (%d) beyond record length (%d)\n", srcname, fsdh->data_offset, b1000reclen);
retval++;
}
if (b1000reclen && fsdh->blockette_offset > b1000reclen)
{
ms_log (2, "%s: Blockette offset (%d) beyond record length (%d)\n", srcname, fsdh->blockette_offset, b1000reclen);
retval++;
}
/* Check that the data offset is beyond the end of the blockettes */
if (fsdh->numsamples && fsdh->data_offset <= endofblockettes)
{
ms_log (2, "%s: Data offset (%d) is within blockette chain (end of blockettes: %d)\n", srcname, fsdh->data_offset, endofblockettes);
retval++;
}
/* Check that the correct number of blockettes were parsed */
if (fsdh->numblockettes != blkt_count)
{
ms_log (2, "%s: Specified number of blockettes (%d) not equal to those parsed (%d)\n", srcname, fsdh->numblockettes, blkt_count);
retval++;
}
}
return retval;
} /* End of ms_parse_raw() */
|