1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/*
* Siren Encoder/Decoder library
*
* @author: Youness Alaoui <kakaroto@kakaroto.homelinux.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "siren7.h"
SirenDecoder Siren7_NewDecoder(int sample_rate) {
SirenDecoder decoder = (SirenDecoder) malloc(sizeof(struct stSirenDecoder));
decoder->sample_rate = sample_rate;
decoder->WavHeader.riff.RiffId = ME_TO_LE32(RIFF_ID);
decoder->WavHeader.riff.RiffSize = sizeof(PCMWavHeader) - 2*sizeof(int);
decoder->WavHeader.riff.RiffSize = ME_TO_LE32(decoder->WavHeader.riff.RiffSize);
decoder->WavHeader.WaveId = ME_TO_LE32(WAVE_ID);
decoder->WavHeader.FmtId = ME_TO_LE32(FMT__ID);
decoder->WavHeader.FmtSize = ME_TO_LE32(sizeof(FmtChunk));
decoder->WavHeader.fmt.Format = ME_TO_LE16(0x01);
decoder->WavHeader.fmt.Channels = ME_TO_LE16(1);
decoder->WavHeader.fmt.SampleRate = ME_TO_LE32(16000);
decoder->WavHeader.fmt.ByteRate = ME_TO_LE32(32000);
decoder->WavHeader.fmt.BlockAlign = ME_TO_LE16(2);
decoder->WavHeader.fmt.BitsPerSample = ME_TO_LE16(16);
decoder->WavHeader.FactId = ME_TO_LE32(FACT_ID);
decoder->WavHeader.FactSize = ME_TO_LE32(sizeof(int));
decoder->WavHeader.Samples = ME_TO_LE32(0);
decoder->WavHeader.DataId = ME_TO_LE32(DATA_ID);
decoder->WavHeader.DataSize = ME_TO_LE32(0);
memset(decoder->context, 0, sizeof(decoder->context));
memset(decoder->backup_frame, 0, sizeof(decoder->backup_frame));
decoder->dw1 = 1;
decoder->dw2 = 1;
decoder->dw3 = 1;
decoder->dw4 = 1;
siren_init();
return decoder;
}
void Siren7_CloseDecoder(SirenDecoder decoder) {
free(decoder);
}
int Siren7_DecodeFrame(SirenDecoder decoder, unsigned char *DataIn, unsigned char *DataOut) {
int number_of_coefs,
sample_rate_bits,
rate_control_bits,
rate_control_possibilities,
checksum_bits,
esf_adjustment,
scale_factor,
number_of_regions,
sample_rate_code,
bits_per_frame;
int decoded_sample_rate_code;
static int absolute_region_power_index[28] = {0};
static float decoder_standard_deviation[28] = {0};
static int power_categories[28] = {0};
static int category_balance[28] = {0};
int ChecksumTable[4] = {0x7F80, 0x7878, 0x6666, 0x5555};
int i, j;
int dwRes = 0;
int envelope_bits = 0;
int rate_control = 0;
int number_of_available_bits;
int number_of_valid_coefs;
int frame_error = 0;
int In[20];
float coefs[320];
float BufferOut[320];
int sum;
int checksum;
int calculated_checksum;
int idx;
int temp1;
int temp2;
for (i = 0; i < 20; i++)
#ifdef __BIG_ENDIAN__
In[i] = ((short *) DataIn)[i];
#else
In[i] = ((((short *) DataIn)[i] << 8) & 0xFF00) | ((((short *) DataIn)[i] >> 8) & 0x00FF);
#endif
dwRes = GetSirenCodecInfo(1, decoder->sample_rate, &number_of_coefs, &sample_rate_bits, &rate_control_bits, &rate_control_possibilities, &checksum_bits, &esf_adjustment, &scale_factor, &number_of_regions, &sample_rate_code, &bits_per_frame );
if (dwRes != 0)
return dwRes;
set_bitstream(In);
decoded_sample_rate_code = 0;
for (i = 0; i < sample_rate_bits; i++) {
decoded_sample_rate_code <<= 1;
decoded_sample_rate_code |= next_bit();
}
if (decoded_sample_rate_code != sample_rate_code)
return 7;
number_of_valid_coefs = region_size * number_of_regions;
number_of_available_bits = bits_per_frame - sample_rate_bits - checksum_bits ;
envelope_bits = decode_envelope(number_of_regions, decoder_standard_deviation, absolute_region_power_index, esf_adjustment);
number_of_available_bits -= envelope_bits;
for (i = 0; i < rate_control_bits; i++) {
rate_control <<= 1;
rate_control |= next_bit();
}
number_of_available_bits -= rate_control_bits;
categorize_regions(number_of_regions, number_of_available_bits, absolute_region_power_index, power_categories, category_balance);
for (i = 0; i < rate_control; i++) {
power_categories[category_balance[i]]++;
}
number_of_available_bits = decode_vector(decoder, number_of_regions, number_of_available_bits, decoder_standard_deviation, power_categories, coefs, scale_factor);
frame_error = 0;
if (number_of_available_bits > 0) {
for (i = 0; i < number_of_available_bits; i++) {
if (next_bit() == 0)
frame_error = 1;
}
} else if (number_of_available_bits < 0 && rate_control + 1 < rate_control_possibilities) {
frame_error |= 2;
}
for (i = 0; i < number_of_regions; i++) {
if (absolute_region_power_index[i] > 33 || absolute_region_power_index[i] < -31)
frame_error |= 4;
}
if (checksum_bits > 0) {
bits_per_frame >>= 4;
checksum = In[bits_per_frame - 1] & ((1 << checksum_bits) - 1);
In[bits_per_frame - 1] &= ~checksum;
sum = 0;
idx = 0;
do {
sum ^= (In[idx] & 0xFFFF) << (idx % 15);
} while (++idx < bits_per_frame);
sum = (sum >> 15) ^ (sum & 0x7FFF);
calculated_checksum = 0;
for (i = 0; i < 4; i++) {
temp1 = ChecksumTable[i] & sum;
for (j = 8; j > 0; j >>= 1) {
temp2 = temp1 >> j;
temp1 ^= temp2;
}
calculated_checksum <<= 1;
calculated_checksum |= temp1 & 1;
}
if (checksum != calculated_checksum)
frame_error |= 8;
}
if (frame_error != 0) {
for (i = 0; i < number_of_valid_coefs; i++) {
coefs[i] = decoder->backup_frame[i];
decoder->backup_frame[i] = 0;
}
} else {
for (i = 0; i < number_of_valid_coefs; i++)
decoder->backup_frame[i] = coefs[i];
}
for (i = number_of_valid_coefs; i < number_of_coefs; i++)
coefs[i] = 0;
dwRes = siren_rmlt_decode_samples(coefs, decoder->context, 320, BufferOut);
for (i = 0; i < 320; i++) {
if (BufferOut[i] > 32767.0)
((short *)DataOut)[i] = (short) ME_TO_LE16((short) 32767);
else if (BufferOut[i] <= -32768.0)
((short *)DataOut)[i] = (short) ME_TO_LE16((short) 32768);
else
((short *)DataOut)[i] = (short) ME_TO_LE16((short) BufferOut[i]);
}
decoder->WavHeader.Samples = ME_FROM_LE32(decoder->WavHeader.Samples);
decoder->WavHeader.Samples += 320;
decoder->WavHeader.Samples = ME_TO_LE32(decoder->WavHeader.Samples);
decoder->WavHeader.DataSize = ME_FROM_LE32(decoder->WavHeader.DataSize);
decoder->WavHeader.DataSize += 640;
decoder->WavHeader.DataSize = ME_TO_LE32(decoder->WavHeader.DataSize);
decoder->WavHeader.riff.RiffSize = ME_FROM_LE32(decoder->WavHeader.riff.RiffSize);
decoder->WavHeader.riff.RiffSize += 640;
decoder->WavHeader.riff.RiffSize = ME_TO_LE32(decoder->WavHeader.riff.RiffSize);
return 0;
}
|