1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/* This file is part of libmspack.
* (C) 2003-2014 Stuart Caie.
*
* libmspack is free software; you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
*
* For further details, see the file COPYING.LIB distributed with libmspack
*/
#ifndef MSPACK_READHUFF_H
#define MSPACK_READHUFF_H 1
/* This implements a fast Huffman tree decoding system. */
#if !(defined(BITS_ORDER_MSB) || defined(BITS_ORDER_LSB))
# error "readhuff.h is used in conjunction with readbits.h, include that first"
#endif
#if !(defined(TABLEBITS) && defined(MAXSYMBOLS))
# error "define TABLEBITS(tbl) and MAXSYMBOLS(tbl) before using readhuff.h"
#endif
#if !(defined(HUFF_TABLE) && defined(HUFF_LEN))
# error "define HUFF_TABLE(tbl) and HUFF_LEN(tbl) before using readhuff.h"
#endif
#ifndef HUFF_ERROR
# error "define HUFF_ERROR before using readhuff.h"
#endif
#ifndef HUFF_MAXBITS
# define HUFF_MAXBITS 16
#endif
#define DECLARE_HUFF_VARS \
DECLARE_BIT_VARS; \
register int huff_idx; \
register unsigned short huff_sym
/* Decodes the next huffman symbol from the input bitstream into var.
* Do not use this macro on a table unless build_decode_table() succeeded.
*/
#define READ_HUFFSYM(tbl, var) do { \
ENSURE_BITS(HUFF_MAXBITS); \
huff_sym = HUFF_TABLE(tbl, PEEK_BITS(TABLEBITS(tbl))); \
if (huff_sym >= MAXSYMBOLS(tbl)) HUFF_TRAVERSE(tbl); \
(var) = huff_sym; \
huff_idx = HUFF_LEN(tbl, huff_sym); \
REMOVE_BITS(huff_idx); \
} while (0)
#ifdef BITS_ORDER_LSB
# define HUFF_TRAVERSE(tbl) do { \
huff_idx = TABLEBITS(tbl) - 1; \
do { \
if (huff_idx++ > HUFF_MAXBITS) HUFF_ERROR; \
huff_sym = HUFF_TABLE(tbl, \
(huff_sym << 1) | ((bit_buffer >> huff_idx) & 1)); \
} while (huff_sym >= MAXSYMBOLS(tbl)); \
} while (0)
#else
#define HUFF_TRAVERSE(tbl) do { \
huff_idx = 1 << (BITBUF_WIDTH - TABLEBITS(tbl)); \
do { \
if ((huff_idx >>= 1) == 0) HUFF_ERROR; \
huff_sym = HUFF_TABLE(tbl, \
(huff_sym << 1) | ((bit_buffer & huff_idx) ? 1 : 0)); \
} while (huff_sym >= MAXSYMBOLS(tbl)); \
} while (0)
#endif
/* make_decode_table(nsyms, nbits, length[], table[])
*
* This function was originally coded by David Tritscher.
* It builds a fast huffman decoding table from
* a canonical huffman code lengths table.
*
* nsyms = total number of symbols in this huffman tree.
* nbits = any symbols with a code length of nbits or less can be decoded
* in one lookup of the table.
* length = A table to get code lengths from [0 to nsyms-1]
* table = The table to fill up with decoded symbols and pointers.
* Should be ((1<<nbits) + (nsyms*2)) in length.
*
* Returns 0 for OK or 1 for error
*/
static int make_decode_table(unsigned int nsyms, unsigned int nbits,
unsigned char *length, unsigned short *table)
{
register unsigned short sym, next_symbol;
register unsigned int leaf, fill;
#ifdef BITS_ORDER_LSB
register unsigned int reverse;
#endif
register unsigned char bit_num;
unsigned int pos = 0; /* the current position in the decode table */
unsigned int table_mask = 1 << nbits;
unsigned int bit_mask = table_mask >> 1; /* don't do 0 length codes */
/* fill entries for codes short enough for a direct mapping */
for (bit_num = 1; bit_num <= nbits; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
#ifdef BITS_ORDER_MSB
leaf = pos;
#else
/* reverse the significant bits */
fill = length[sym]; reverse = pos >> (nbits - fill); leaf = 0;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
#endif
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
/* fill all possible lookups of this symbol with the symbol itself */
#ifdef BITS_ORDER_MSB
for (fill = bit_mask; fill-- > 0;) table[leaf++] = sym;
#else
fill = bit_mask; next_symbol = 1 << bit_num;
do { table[leaf] = sym; leaf += next_symbol; } while (--fill);
#endif
}
bit_mask >>= 1;
}
/* exit with success if table is now complete */
if (pos == table_mask) return 0;
/* mark all remaining table entries as unused */
for (sym = pos; sym < table_mask; sym++) {
#ifdef BITS_ORDER_MSB
table[sym] = 0xFFFF;
#else
reverse = sym; leaf = 0; fill = nbits;
do { leaf <<= 1; leaf |= reverse & 1; reverse >>= 1; } while (--fill);
table[leaf] = 0xFFFF;
#endif
}
/* next_symbol = base of allocation for long codes */
next_symbol = ((table_mask >> 1) < nsyms) ? nsyms : (table_mask >> 1);
/* give ourselves room for codes to grow by up to 16 more bits.
* codes now start at bit nbits+16 and end at (nbits+16-codelength) */
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
for (bit_num = nbits+1; bit_num <= HUFF_MAXBITS; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
if (pos >= table_mask) return 1; /* table overflow */
#ifdef BITS_ORDER_MSB
leaf = pos >> 16;
#else
/* leaf = the first nbits of the code, reversed */
reverse = pos >> 16; leaf = 0; fill = nbits;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
#endif
for (fill = 0; fill < (bit_num - nbits); fill++) {
/* if this path hasn't been taken yet, 'allocate' two entries */
if (table[leaf] == 0xFFFF) {
table[(next_symbol << 1) ] = 0xFFFF;
table[(next_symbol << 1) + 1 ] = 0xFFFF;
table[leaf] = next_symbol++;
}
/* follow the path and select either left or right for next bit */
leaf = table[leaf] << 1;
if ((pos >> (15-fill)) & 1) leaf++;
}
table[leaf] = sym;
pos += bit_mask;
}
bit_mask >>= 1;
}
/* full table? */
return (pos == table_mask) ? 0 : 1;
}
#endif
|