1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/* Example usage with qemu-nbd:
*
* sock=`mktemp -u`
* qemu-nbd -f $format -k $sock -r image
* ./strict-structured-reads $sock
*
* Example usage with nbdkit (but less useful while nbdkit can't send holes):
*
* nbdkit -U- sparse-random 1G --run './strict-structured-reads "$unixsocket"'
*
* This will perform read randomly over the image and check that all
* structured replies comply with the NBD spec (chunks may be out of
* order or interleaved, but no read succeeds unless chunks cover the
* entire region, with no overlapping or zero-length chunks).
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <libnbd.h>
/* A linked list of ranges still not seen. */
struct range {
uint64_t first;
uint64_t last;
struct range *next;
};
/* Per-read data. */
struct data {
uint64_t offset;
size_t count;
uint32_t flags;
size_t chunks;
struct range *remaining;
};
#define MAX_BUF (2 * 1024 * 1024)
static char buf[MAX_BUF];
/* Various statistics */
static int total_data_chunks;
static int64_t total_data_bytes;
static int total_hole_chunks;
static int64_t total_hole_bytes;
static int total_chunks;
static int total_df_reads;
static int total_reads;
static int64_t total_bytes;
static int total_success;
static int
read_chunk (void *opaque,
const void *bufv, size_t count, uint64_t offset,
unsigned status, int *error)
{
struct data *data = opaque;
struct range *r, **prev;
/* libnbd guarantees this: */
assert (offset >= data->offset);
assert (offset + count <= data->offset + data->count);
switch (status) {
case LIBNBD_READ_DATA:
total_data_chunks++;
total_data_bytes += count;
break;
case LIBNBD_READ_HOLE:
total_hole_chunks++;
total_hole_bytes += count;
break;
case LIBNBD_READ_ERROR:
assert (count == 0);
count = 1; /* Ensure no further chunks visit that offset */
break;
default:
goto error;
}
data->chunks++;
if (count == 0) {
fprintf (stderr, "buggy server: chunk must have non-zero size\n");
goto error;
}
/* Find element in remaining, or the server is in error */
for (prev = &data->remaining, r = *prev; r; prev = &r->next, r = r->next) {
if (offset >= r->first)
break;
}
if (r == NULL || offset + count > r->last) {
/* we fail to detect double errors reported at the same offset,
* but at least the read is already going to fail.
*/
if (status == LIBNBD_READ_ERROR)
return 0;
fprintf (stderr, "buggy server: chunk with overlapping range\n");
goto error;
}
/* Resize or split r to track new remaining bytes */
if (offset == r->first) {
if (offset + count == r->last) {
*prev = r->next;
free (r);
}
else
r->first += count;
}
else if (offset + count == r->last) {
r->last -= count;
}
else {
struct range *n = malloc (sizeof *n);
assert (n);
n->next = r->next;
r->next = n;
n->last = r->last;
r->last = offset - r->first;
n->first = offset + count;
}
return 0;
error:
*error = EPROTO;
return -1;
}
static int
read_verify (void *opaque, int *error)
{
int ret = 0;
struct data *data = opaque;
ret = -1;
total_reads++;
total_chunks += data->chunks;
if (*error)
goto cleanup;
assert (data->chunks > 0);
if (data->flags & LIBNBD_CMD_FLAG_DF) {
total_df_reads++;
if (data->chunks > 1) {
fprintf (stderr, "buggy server: too many chunks for DF flag\n");
*error = EPROTO;
goto cleanup;
}
}
if (data->remaining && !*error) {
fprintf (stderr, "buggy server: not enough chunks on success\n");
*error = EPROTO;
goto cleanup;
}
total_bytes += data->count;
total_success++;
ret = 0;
cleanup:
while (data->remaining) {
struct range *r = data->remaining;
data->remaining = r->next;
free (r);
}
return ret;
}
int
main (int argc, char *argv[])
{
struct nbd_handle *nbd;
size_t i;
int64_t exportsize;
int64_t maxsize = MAX_BUF;
srand (time (NULL));
if (argc != 2) {
fprintf (stderr, "%s socket|uri\n", argv[0]);
exit (EXIT_FAILURE);
}
nbd = nbd_create ();
if (nbd == NULL) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
if (strstr (argv[1], "://")) {
if (nbd_connect_uri (nbd, argv[1]) == -1) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
}
else if (nbd_connect_unix (nbd, argv[1]) == -1) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
exportsize = nbd_get_size (nbd);
if (exportsize == -1) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
if (exportsize < 512) {
fprintf (stderr, "image is too small for useful testing\n");
exit (EXIT_FAILURE);
}
if (exportsize <= maxsize)
maxsize = exportsize - 1;
/* Queue up 1000 parallel reads. We are reusing the same buffer,
* which is not safe in real life, but okay here because we aren't
* validating contents, only server behavior.
*/
for (i = 0; i < 1000; ++i) {
uint32_t flags = 0;
struct data *d = malloc (sizeof *d);
struct range *r = malloc (sizeof *r);
uint64_t offset;
nbd_chunk_callback chunk_callback = { .callback = read_chunk,
.user_data = d };
nbd_completion_callback completion_callback = { .callback = read_verify,
.user_data = d,
.free = free };
assert (d && r);
offset = rand () % (exportsize - maxsize);
if (rand () & 1)
flags = LIBNBD_CMD_FLAG_DF;
*r = (struct range) { .first = offset, .last = offset + maxsize, };
*d = (struct data) { .offset = offset, .count = maxsize, .flags = flags,
.remaining = r, };
if (nbd_aio_pread_structured (nbd, buf, sizeof buf, offset, chunk_callback,
completion_callback, flags) == -1) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
}
while (nbd_aio_in_flight (nbd) > 0) {
int64_t cookie = nbd_aio_peek_command_completed (nbd);
if (cookie == -1) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
if (cookie == 0) {
if (nbd_poll (nbd, -1) == -1) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
}
else
nbd_aio_command_completed (nbd, cookie);
}
if (nbd_shutdown (nbd, 0) == -1) {
fprintf (stderr, "%s\n", nbd_get_error ());
exit (EXIT_FAILURE);
}
printf ("traffic:\n");
printf (" bytes sent: %10" PRIu64 "\n", nbd_stats_bytes_sent (nbd));
printf (" bytes received: %10" PRIu64 "\n", nbd_stats_bytes_received (nbd));
printf (" chunks sent: %10" PRIu64 "\n", nbd_stats_chunks_sent (nbd));
printf (" chunks received: %10" PRIu64 "\n", nbd_stats_chunks_received (nbd));
printf ("totals:\n");
printf (" data chunks: %10d\n", total_data_chunks);
printf (" data bytes: %10" PRId64 "\n", total_data_bytes);
printf (" hole chunks: %10d\n", total_hole_chunks);
printf (" hole bytes: %10" PRId64 "\n", total_hole_bytes);
printf (" all chunks: %10d\n", total_chunks);
printf (" df reads: %10d\n", total_df_reads);
printf (" reads: %10d\n", total_reads);
printf (" bytes read: %10" PRId64 "\n", total_bytes);
printf (" compliant: %10d\n", total_success);
nbd_close (nbd);
exit (EXIT_SUCCESS);
}
|