1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
|
#!/usr/bin/perl
package NetAddr::IP::Lite;
use Carp;
use strict;
#use diagnostics;
#use warnings;
use NetAddr::IP::Util qw(
inet_any2n
addconst
sub128
ipv6to4
notcontiguous
isIPv4
shiftleft
inet_n2dx
hasbits
bin2bcd
bcd2bin
inet_aton
inet_any2n
ipv6_aton
ipv6_n2x
mask4to6
ipv4to6
);
use vars qw(@ISA @EXPORT_OK $VERSION $Accept_Binary_IP $Old_nth $AUTOLOAD *Zero);
$VERSION = do { my @r = (q$Revision: 1.13 $ =~ /\d+/g); sprintf "%d."."%02d" x $#r, @r };
require Exporter;
@ISA = qw(Exporter);
@EXPORT_OK = qw(Zeros Zero Ones V4mask V4net);
# Set to true, to enable recognizing of ipV4 && ipV6 binary notation IP
# addresses. Thanks to Steve Snodgrass for reporting. This can be done
# at the time of use-ing the module. See docs for details.
$Accept_Binary_IP = 0;
$Old_nth = 0;
*Zero = \&Zeros;
=head1 NAME
NetAddr::IP::Lite - Manages IPv4 and IPv6 addresses and subnets
=head1 SYNOPSIS
use NetAddr::IP::Lite qw(
Zeros
Ones
V4mask
V4net
:aton DEPRECATED !
:old_nth
);
my $ip = new NetAddr::IP::Lite '127.0.0.1';
or from a packed IPv4 address
my $ip = new_from_aton NetAddr::IP::Lite (inet_aton('127.0.0.1'));
or from an octal filtered IPv4 address
my $ip = new_no NetAddr::IP::Lite '127.012.0.0';
print "The address is ", $ip->addr, " with mask ", $ip->mask, "\n" ;
if ($ip->within(new NetAddr::IP::Lite "127.0.0.0", "255.0.0.0")) {
print "Is a loopback address\n";
}
# This prints 127.0.0.1/32
print "You can also say $ip...\n";
The following four functions return ipV6 representations of:
:: = Zeros();
FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF = Ones();
FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:: = V4mask();
::FFFF:FFFF = V4net();
=head1 INSTALLATION
Un-tar the distribution in an appropriate directory and type:
perl Makefile.PL
make
make test
make install
B<NetAddr::IP::Lite> depends on B<NetAddr::IP::Util> which installs by default with its primary functions compiled
using Perl's XS extensions to build a 'C' library. If you do not have a 'C'
complier available or would like the slower Pure Perl version for some other
reason, then type:
perl Makefile.PL -noxs
make
make test
make install
=head1 DESCRIPTION
This module provides an object-oriented abstraction on top of IP
addresses or IP subnets, that allows for easy manipulations. Most of the
operations of NetAddr::IP are supported. This module will work older
versions of Perl and does B<not> use Math::BigInt.
The internal representation of all IP objects is in 128 bit IPv6 notation.
IPv4 and IPv6 objects may be freely mixed.
The supported operations are described below:
=cut
# in the off chance that NetAddr::IP::Lite objects are created
# and the caller later loads NetAddr::IP and expects to use
# those objects, let the AUTOLOAD routine find and redirect
# NetAddr::IP::Lite method and subroutine calls to NetAddr::IP.
#
my $parent = 'NetAddr::IP';
# test function
#
# input: subroutine name in NetAddr::IP
# output: t/f if sub name exists in NetAddr::IP namespace
#
#sub sub_exists {
# my $other = $parent .'::';
# return exists ${$other}{$_[0]};
#}
sub DESTROY {};
sub AUTOLOAD {
no strict;
my ($pkg,$func) = ($AUTOLOAD =~ /(.*)::([^:]+)$/);
my $other = $parent .'::';
if ($pkg =~ /^$other/o && exists ${$other}{$func}) {
$other .= $func;
goto &{$other};
}
my @stack = caller(0);
if ( $pkg eq ref $_[0] ) {
$other = qq|Can't locate object method "$func" via|;
}
else {
$other = qq|Undefined subroutine \&$AUTOLOAD not found in|;
}
die $other . qq| package "$parent" or "$pkg" (did you forgot to load a module?) at $stack[1] line $stack[2].\n|;
}
=head2 Overloaded Operators
=cut
# these really should be packed in Network Long order but since they are
# symmetrical, that extra internal processing can be skipped
my $_v4zero = pack('L',0);
my $_zero = pack('L4',0,0,0,0);
my $_ones = ~$_zero;
my $_v4mask = pack('L4',0xffffffff,0xffffffff,0xffffffff,0);
my $_v4net = ~ $_v4mask;
sub Zeros() {
return $_zero;
}
sub Ones() {
return $_ones;
}
sub V4mask() {
return $_v4mask;
}
sub V4net() {
return $_v4net;
}
#############################################
# These are the overload methods, placed here
# for convenience.
#############################################
use overload
'+' => \&plus,
'-' => \&minus,
'++' => \&plusplus,
'--' => \&minusminus,
"=" => \©,
'""' => sub { $_[0]->cidr(); },
'eq' => sub {
my $a = (UNIVERSAL::isa($_[0],__PACKAGE__)) ? $_[0]->cidr : $_[0];
my $b = (UNIVERSAL::isa($_[1],__PACKAGE__)) ? $_[1]->cidr : $_[1];
$a eq $b;
},
'==' => sub {
return 0 unless UNIVERSAL::isa($_[0],__PACKAGE__) && UNIVERSAL::isa($_[1],__PACKAGE__);
$_[0]->cidr eq $_[1]->cidr;
},
'>' => sub {
return &comp_addr_mask > 0 ? 1 : 0;
},
'<' => sub {
return &comp_addr_mask < 0 ? 1 : 0;
},
'>=' => sub {
return &comp_addr_mask < 0 ? 0 : 1;
},
'<=' => sub {
return &comp_addr_mask > 0 ? 0 : 1;
},
'<=>' => \&comp_addr_mask,
'cmp' => \&comp_addr_mask;
sub comp_addr_mask {
my($c,$rv) = sub128($_[0]->{addr},$_[1]->{addr});
return -1 unless $c;
return 1 if hasbits($rv);
($c,$rv) = sub128($_[0]->{mask},$_[1]->{mask});
return -1 unless $c;
return hasbits($rv) ? 1 : 0;
}
#sub comp_addr {
# my($c,$rv) = sub128($_[0]->{addr},$_[1]->{addr});
# return -1 unless $c;
# return hasbits($rv) ? 1 : 0;
#}
=pod
=over
=item B<Assignment (C<=>)>
Has been optimized to copy one NetAddr::IP::Lite object to another very quickly.
=item B<C<-E<gt>copy()>>
The B<assignment (C<=>)> operation is only put in to operation when the
copied object is further mutated by another overloaded operation. See
L<overload> B<SPECIAL SYMBOLS FOR "use overload"> for details.
B<C<-E<gt>copy()>> actually creates a new object when called.
=cut
sub copy {
return _new($_[0],$_[0]->{addr}, $_[0]->{mask});
}
=item B<Stringification>
An object can be used just as a string. For instance, the following code
my $ip = new NetAddr::IP::Lite '192.168.1.123';
print "$ip\n";
Will print the string 192.168.1.123/32.
my $ip = new6 NetAddr::IP::Lite '192.168.1.123';
print "$ip\n";
Will print the string
=item B<Equality>
You can test for equality with either C<eq> or C<==>. C<eq> allows the
comparison with arbitrary strings as well as NetAddr::IP::Lite objects. The
following example:
if (NetAddr::IP::Lite->new('127.0.0.1','255.0.0.0') eq '127.0.0.1/8')
{ print "Yes\n"; }
Will print out "Yes".
Comparison with C<==> requires both operands to be NetAddr::IP::Lite objects.
In both cases, a true value is returned if the CIDR representation of
the operands is equal.
=item B<Comparison via E<gt>, E<lt>, E<gt>=, E<lt>=, E<lt>=E<gt> and C<cmp>>
Internally, all network objects are represented in 128 bit format.
The numeric representation of the network is compared through the
corresponding operation. Comparisons are tried first on the address portion
of the object and if that is equal then the NUMERIC cidr portion of the
masks are compared. This leads to the counterintuitive result that
/24 > /16
Comparison should not be done on netaddr objects with different CIDR as
this may produce indeterminate - unexpected results,
rather the determination of which netblock is larger or smaller should be
done by comparing
$ip1->masklen <=> $ip2->masklen
=item B<Addition of a constant (C<+>)>
Add a 32 bit signed constant to the address part of a NetAddr object.
This operation changes the address part to point so many hosts above the
current objects start address. For instance, this code:
print NetAddr::IP::Lite->new('127.0.0.1') + 5;
will output 127.0.0.6/8. The address will wrap around at the broadcast
back to the network address. This code:
print NetAddr::IP::Lite->new('10.0.0.1/24') + 255;
outputs 10.0.0.0/24.
Returns the the unchanged object when the constant is missing or out of range.
2147483647 <= constant >= -2147483648
=cut
sub plus {
my $ip = shift;
my $const = shift;
return $ip unless $const &&
$const < 2147483648 &&
$const > -2147483649;
my $a = $ip->{addr};
my $m = $ip->{mask};
my $lo = $a & ~$m;
my $hi = $a & $m;
my $new = ((addconst($lo,$const))[1] & ~$m) | $hi;
return _new($ip,$new,$m);
}
=item B<Subtraction of a constant (C<->)>
The complement of the addition of a constant.
=item B<Difference (C<->)>
Returns the difference between the address parts of two NetAddr::IP::Lite
objects address parts as a 32 bit signed number.
Returns B<undef> if the difference is out of range.
=cut
my $_smsk = pack('L3N',0xffffffff,0xffffffff,0xffffffff,0x80000000);
sub minus {
my $ip = shift;
my $arg = shift;
unless (ref $arg) {
return plus($ip, -$arg);
}
my($carry,$dif) = sub128($ip->{addr},$arg->{addr});
if ($carry) { # value is positive
return undef if hasbits($dif & $_smsk); # all sign bits should be 0's
return (unpack('L3N',$dif))[3];
} else {
return undef if hasbits(($dif & $_smsk) ^ $_smsk); # sign is 1's
return (unpack('L3N',$dif))[3] - 4294967296;
}
}
# Auto-increment an object
=item B<Auto-increment>
Auto-incrementing a NetAddr::IP::Lite object causes the address part to be
adjusted to the next host address within the subnet. It will wrap at
the broadcast address and start again from the network address.
=cut
sub plusplus {
my $ip = shift;
my $a = $ip->{addr};
my $m = $ip->{mask};
my $lo = $a & ~ $m;
my $hi = $a & $m;
$ip->{addr} = ((addconst($lo,1))[1] & ~ $m) | $hi;
return $ip;
}
=item B<Auto-decrement>
Auto-decrementing a NetAddr::IP::Lite object performs exactly the opposite
of auto-incrementing it, as you would expect.
=cut
sub minusminus {
my $ip = shift;
my $a = $ip->{addr};
my $m = $ip->{mask};
my $lo = $a & ~$m;
my $hi = $a & $m;
$ip->{addr} = ((addconst($lo,-1))[1] & ~$m) | $hi;
return $ip;
}
#############################################
# End of the overload methods.
#############################################
# Preloaded methods go here.
# This is a variant to ->new() that
# creates and blesses a new object
# without the fancy parsing of
# IP formats and shorthands.
# return a blessed IP object without parsing
# input: prototype, naddr, nmask
# returns: blessed IP object
#
sub _new ($$$) {
my $proto = shift;
my $class = ref($proto) || die "reference required";
$proto = $proto->{isv6};
my $self = {
addr => $_[0],
mask => $_[1],
isv6 => $proto,
};
return bless $self, $class;
}
=pod
=back
=head2 Methods
=over
=item C<-E<gt>new([$addr, [ $mask|IPv6 ]])>
=item C<-E<gt>new6([$addr, [ $mask]])>
=item C<-E<gt>new_no([$addr, [ $mask]])>
=item C<-E<gt>new_from_aton($netaddr)>
The first two methods create a new address with the supplied address in
C<$addr> and an optional netmask C<$mask>, which can be omitted to get
a /32 or /128 netmask for IPv4 / IPv6 addresses respectively.
The third method C<new_no> is exclusively for IPv4 addresses and filters
improperly formatted
dot quad strings for leading 0's that would normally be interpreted as octal
format by NetAddr per the specifications for inet_aton.
B<new_from_aton> takes a packed IPv4 address and assumes a /32 mask. This
function replaces the DEPRECATED :aton functionality which is fundamentally
broken.
C<-E<gt>new6> marks the address as being in ipV6 address space even if the
format would suggest otherwise.
i.e. ->new6('1.2.3.4') will result in ::102:304
addresses submitted to ->new in ipV6 notation will
remain in that notation permanently. i.e.
->new('::1.2.3.4') will result in ::102:304
whereas new('1.2.3.4') would print out as 1.2.3.4
See "STRINGIFICATION" below.
C<$addr> can be almost anything that can be resolved to an IP address
in all the notations I have seen over time. It can optionally contain
the mask in CIDR notation.
B<prefix> notation is understood, with the limitation that the range
specified by the prefix must match with a valid subnet.
Addresses in the same format returned by C<inet_aton> or
C<gethostbyname> can also be understood, although no mask can be
specified for them. The default is to not attempt to recognize this
format, as it seems to be seldom used.
###### DEPRECATED, will be remove in version 5 ############
To accept addresses in that format, invoke the module as in
use NetAddr::IP::Lite ':aton'
###### USE new_from_aton instead ##########################
If called with no arguments, 'default' is assumed.
C<$addr> can be any of the following and possibly more...
n.n
n.n/mm
n.n.n
n.n.n/mm
n.n.n.n
n.n.n.n/mm 32 bit cidr notation
n.n.n.n/m.m.m.m
loopback, localhost, broadcast, any, default
x.x.x.x/host
0xABCDEF, 0b111111000101011110, (or a bcd number)
a netaddr as returned by 'inet_aton'
Any RFC1884 notation
::n.n.n.n
::n.n.n.n/mmm 128 bit cidr notation
::n.n.n.n/::m.m.m.m
::x:x
::x:x/mmm
x:x:x:x:x:x:x:x
x:x:x:x:x:x:x:x/mmm
x:x:x:x:x:x:x:x/m:m:m:m:m:m:m:m any RFC1884 notation
loopback, localhost, unspecified, any, default
::x:x/host
0xABCDEF, 0b111111000101011110 within the limits
of perl's number resolution
123456789012 a 'big' bcd number i.e. Math::BigInt
If called with no arguments, 'default' is assumed.
=cut
my %fip4 = (
default => Zeros,
any => Zeros,
broadcast => inet_any2n('255.255.255.255'),
loopback => inet_any2n('127.0.0.1'),
unspecified => undef,
);
my %fip4m = (
default => Zeros,
any => Zeros,
broadcast => Ones,
loopback => mask4to6(inet_aton('255.0.0.0')),
unspecified => undef, # not applicable for ipV4
host => Ones,
);
my %fip6 = (
default => Zeros,
any => Zeros,
broadcast => undef, # not applicable for ipV6
loopback => inet_any2n('::1'),
unspecified => Zeros,
);
my %fip6m = (
default => Zeros,
any => Zeros,
broadcast => undef, # not applicable for ipV6
loopback => Ones,
unspecified => Ones,
host => Ones,
);
my $ff000000 = pack('L3N',0xffffffff,0xffffffff,0xffffffff,0xFF000000);
my $ffff0000 = pack('L3N',0xffffffff,0xffffffff,0xffffffff,0xFFFF0000);
my $ffffff00 = pack('L3N',0xffffffff,0xffffffff,0xffffffff,0xFFFFFF00);
sub _obits ($$) {
my($lo,$hi) = @_;
return 0xFF if $lo == $hi;
return (~ ($hi ^ $lo)) & 0xFF;
}
sub new_no($;$$) {
unshift @_, -1;
goto &_xnew;
}
sub new($;$$) {
unshift @_, 0;
goto &_xnew;
}
sub new_from_aton($$) {
my $proto = shift;
my $class = ref $proto || $proto || __PACKAGE__;
my $ip = shift;
return undef unless defined $ip;
my $addrlen = length($ip);
return undef unless $addrlen == 4;
my $self = {
addr => ipv4to6($ip),
mask => &Ones,
isv6 => 0,
};
return bless $self, $class;
}
sub new6($;$$) {
unshift @_, 1;
goto &_xnew;
}
sub _no_octal {
$_[0] =~ m/^(\d+)\.(\d+)\.(\d+)\.(\d+)$/;
return sprintf("%d.%d.%d.%d",$1,$2,$3,$4);
}
sub _xnew($$;$$) {
my $noctal = 0;
my $isV6 = shift;
if ($isV6 < 0) { # flag for no octal?
$isV6 = 0;
$noctal = 1;
}
my $proto = shift;
my $class = ref $proto || $proto || __PACKAGE__;
my $ip = lc shift;
$ip = 'default' unless defined $ip;
my $hasmask = 1;
my($mask,$tmp);
while (1) {
unless (@_) {
if ($ip =~ m!^(.+)/(.+)$!) {
$ip = $1;
$mask = $2;
} elsif (grep($ip eq $_,qw(default any broadcast loopback unspecified))) {
$isV6 = 1 if $ip eq 'unspecified';
if ($isV6) {
$mask = $fip6m{$ip};
return undef unless defined ($ip = $fip6{$ip});
} else {
$mask = $fip4m{$ip};
return undef unless defined ($ip = $fip4{$ip});
}
last;
}
}
elsif (defined $_[0]) {
if ($_[0] =~ /ipv6/i || $isV6) {
if (grep($ip eq $_,qw(default any loopback unspecified))) {
$mask = $fip6m{$ip};
$ip = $fip6{$ip};
last;
} else {
return undef;
}
} else {
$mask = lc $_[0];
}
}
unless (defined $mask) {
$hasmask = 0;
$mask = 'host';
}
# parse mask
if ($mask =~ /^(\d+)$/) {
if (index($ip,':') < 0) { # is ipV4
if ($1 == 32) { # cidr 32
$mask = Ones;
}
elsif ($mask < 32) { # small cidr
$mask = shiftleft(Ones,32 -$1);
} else { # is a binary mask
$mask = pack('L3N',0xffffffff,0xffffffff,0xffffffff,$1);
}
} else { # is ipV6
$isV6 = 1;
if ($1 == 128) { # cidr 128
$mask = Ones;
}
elsif ($mask < 128) { # small cidr
$mask = shiftleft(Ones,128 -$1);
} else { # is a binary mask
$mask = bcd2bin($1);
}
}
} elsif ($mask =~ m/^\d+\.\d+\.\d+\.\d+$/) { # ipv4 form of mask
$mask = _no_octal($mask) if $noctal; # filter for octal
return undef unless defined ($mask = inet_aton($mask));
$mask = mask4to6($mask);
} elsif (grep($mask eq $_,qw(default any broadcast loopback unspecified host))) {
if (index($ip,':') < 0 && ! $isV6) {
return undef unless defined ($mask = $fip4m{$mask});
} else {
return undef unless defined ($mask = $fip6m{$mask});
}
} else {
return undef unless defined ($mask = ipv6_aton($mask)); # try ipv6 form of mask
}
# parse IP
if (index($ip,':') < 0) { # ipv4 address
if ($ip =~ m/^(\d+)\.(\d+)\.(\d+)\.(\d+)$/) {
; # the common case
}
elsif (grep($ip eq $_,qw(default any broadcast loopback))) {
return undef unless defined ($ip = $fip4{$ip});
last;
}
elsif ($ip =~ m/^(\d+)\.(\d+)$/) {
$ip = ($hasmask)
? "${1}.${2}.0.0"
: "${1}.0.0.${2}";
}
elsif ($ip =~ m/^(\d+)\.(\d+)\.(\d+)$/) {
$ip = ($hasmask)
? "${1}.${2}.${3}.0"
: "${1}.${2}.0.${3}";
}
elsif ($ip =~ /^(\d+)$/ && $hasmask && $1 >= 0 and $1 < 256) { # pure numeric
$ip = sprintf("%d.0.0.0",$1);
}
elsif ($ip =~ /^\d+$/ && !$hasmask) { # a big integer
$ip = bcd2bin($ip);
last;
}
elsif ($ip =~ /^0[xb]\d+$/ && $hasmask &&
(($tmp = eval "$ip") || 1) &&
$tmp >= 0 && $tmp < 256) {
$ip = sprintf("%d.0.0.0",$tmp);
}
elsif ($ip =~ /^-?\d+$/) {
$ip += 2 ** 32 if $ip < 0;
$ip = pack('L3N',0,0,0,$ip);
last;
}
elsif ($ip =~ /^-?0[xb]\d+$/) {
$ip = eval "$ip";
$ip = pack('L3N',0,0,0,$ip);
last;
}
# notations below include an implicit mask specification
elsif ($ip =~ m/^(\d+)\.$/) {
$ip = "${1}.0.0.0";
$mask = $ff000000;
}
elsif ($ip =~ m/^(\d+)\.(\d+)-(\d+)\.?$/ && $2 <= $3 && $3 < 256) {
$ip = "${1}.${2}.0.0";
$mask = pack('L3C4',0xffffffff,0xffffffff,0xffffffff,255,_obits($2,$3),0,0);
}
elsif ($ip =~ m/^(\d+)-(\d+)\.?$/ and $1 <= $2 && $2 < 256) {
$ip = "${1}.0.0.0";
$mask = pack('L3C4',0xffffffff,0xffffffff,0xffffffff,_obits($1,$2),0,0,0)
}
elsif ($ip =~ m/^(\d+)\.(\d+)\.$/) {
$ip = "${1}.${2}.0.0";
$mask = $ffff0000;
}
elsif ($ip =~ m/^(\d+)\.(\d+)\.(\d+)-(\d+)\.?$/ && $3 <= $4 && $4 < 256) {
$ip = "${1}.${2}.${3}.0";
$mask = pack('L3C4',0xffffffff,0xffffffff,0xffffffff,255,255,_obits($3,$4),0);
}
elsif ($ip =~ m/^(\d+)\.(\d+)\.(\d+)\.$/) {
$ip = "${1}.${2}.${3}.0";
$mask = $ffffff00;
}
elsif ($ip =~ m/^(\d+)\.(\d+)\.(\d+)\.(\d+)-(\d+)$/ && $4 <= $5 && $5 < 256) {
$ip = "${1}.${2}.${3}.${4}";
$mask = pack('L3C4',0xffffffff,0xffffffff,0xffffffff,255,255,255,_obits($4,$5));
}
elsif ($ip =~ m/^(\d+\.\d+\.\d+\.\d+)
\s*-\s*(\d+\.\d+\.\d+\.\d+)$/x) {
if ($noctal) {
return undef unless ($ip = inet_aton(_no_octal($1)));
return undef unless ($tmp = inet_aton(_no_octal($2)));
} else {
return undef unless ($ip = inet_aton($1));
return undef unless ($tmp = inet_aton($2));
}
# check for left side greater than right side
# save numeric difference in $mask
return undef if ($tmp = unpack('N',$tmp) - unpack('N',$ip)) < 0;
$ip = ipv4to6($ip);
$tmp = pack('L3N',0,0,0,$tmp);
$mask = ~$tmp;
return undef if notcontiguous($mask);
# check for non-aligned left side
return undef if hasbits($ip & $tmp);
last;
}
elsif ($ip !~ /[^a-zA-Z0-9\.-]/ && ($tmp = gethostbyname($ip)) && $tmp ne $_v4zero && $tmp ne $_zero ) {
$ip = ipv4to6($tmp);
last;
}
elsif ($Accept_Binary_IP && ! $hasmask) {
if (length($ip) == 4) {
$ip = ipv4to6($ip);
} elsif (length($ip) == 16) {
$isV6 = 1;
} else {
return undef;
}
last;
} else {
return undef;
}
return undef unless defined ($ip = inet_aton($ip));
$ip = ipv4to6($ip);
last;
}
########## continuing
else { # ipv6 address
$isV6 = 1;
if (defined ($tmp = ipv6_aton($ip))) {
$ip = $tmp;
last;
}
last if grep($ip eq $_,qw(default any loopback unspecified)) &&
defined ($ip = $fip6{$ip});
return undef;
}
} # end while (1)
return undef if notcontiguous($mask); # invalid if not contiguous
my $self = {
addr => $ip,
mask => $mask,
isv6 => $isV6,
};
return bless $self, $class;
}
=item C<-E<gt>broadcast()>
Returns a new object referring to the broadcast address of a given
subnet. The broadcast address has all ones in all the bit positions
where the netmask has zero bits. This is normally used to address all
the hosts in a given subnet.
=cut
sub broadcast ($) {
my $ip = _new($_[0],$_[0]->{addr} | ~$_[0]->{mask},$_[0]->{mask});
$ip->{addr} &= V4net unless $ip->{isv6};
return $ip;
}
=item C<-E<gt>network()>
Returns a new object referring to the network address of a given
subnet. A network address has all zero bits where the bits of the
netmask are zero. Normally this is used to refer to a subnet.
=cut
sub network ($) {
return _new($_[0],$_[0]->{addr} & $_[0]->{mask},$_[0]->{mask});
}
=item C<-E<gt>addr()>
Returns a scalar with the address part of the object as an IPv4 or IPv6 text
string as appropriate. This is useful for printing or for passing the address
part of the NetAddr::IP::Lite object to other components that expect an IP
address. If the object is an ipV6 address or was created using ->new6($ip)
it will be reported in ipV6 hex format otherwise it will be reported in dot
quad format only if it resides in ipV4 address space.
=cut
sub addr ($) {
return ($_[0]->{isv6})
? ipv6_n2x($_[0]->{addr})
: inet_n2dx($_[0]->{addr});
}
=item C<-E<gt>mask()>
Returns a scalar with the mask as an IPv4 or IPv6 text string as
described above.
=cut
sub mask ($) {
return ipv6_n2x($_[0]->{mask}) if $_[0]->{isv6};
my $mask = isIPv4($_[0]->{addr})
? $_[0]->{mask} & V4net
: $_[0]->{mask};
return inet_n2dx($mask);
}
=item C<-E<gt>masklen()>
Returns a scalar the number of one bits in the mask.
=cut
sub masklen ($) {
my $len = (notcontiguous($_[0]->{mask}))[1];
return 0 unless $len;
return $len if $_[0]->{isv6};
return isIPv4($_[0]->{addr})
? $len -96
: $len;
}
=item C<-E<gt>bits()>
Returns the width of the address in bits. Normally 32 for v4 and 128 for v6.
=cut
sub bits {
return $_[0]->{isv6} ? 128 : 32;
}
=item C<-E<gt>version()>
Returns the version of the address or subnet. Currently this can be
either 4 or 6.
=cut
sub version {
my $self = shift;
return $self->{isv6} ? 6 : 4;
}
=item C<-E<gt>cidr()>
Returns a scalar with the address and mask in CIDR notation. A
NetAddr::IP::Lite object I<stringifies> to the result of this function.
(see comments about ->new6() and ->addr() for output formats)
=cut
sub cidr ($) {
return $_[0]->addr . '/' . $_[0]->masklen;
}
=item C<-E<gt>aton()>
Returns the address part of the NetAddr::IP::Lite object in the same format
as the C<inet_aton()> or C<ipv6_aton> function respectively. If the object
was created using ->new6($ip), the address returned will always be in ipV6
format, even for addresses in ipV4 address space.
=cut
sub aton {
return $_[0]->{addr} if $_[0]->{isv6};
return isIPv4($_[0]->{addr})
? ipv6to4($_[0]->{addr})
: $_[0]->{addr};
}
=item C<-E<gt>range()>
Returns a scalar with the base address and the broadcast address
separated by a dash and spaces. This is called range notation.
=cut
sub range ($) {
return $_[0]->network->addr . ' - ' . $_[0]->broadcast->addr;
}
=item C<-E<gt>numeric()>
When called in a scalar context, will return a numeric representation
of the address part of the IP address. When called in an array
contest, it returns a list of two elements. The first element is as
described, the second element is the numeric representation of the
netmask.
This method is essential for serializing the representation of a
subnet.
=cut
sub numeric ($) {
if (wantarray) {
if (! $_[0]->{isv6} && isIPv4($_[0]->{addr})) {
return ( sprintf("%u",unpack('N',ipv6to4($_[0]->{addr}))),
sprintf("%u",unpack('N',ipv6to4($_[0]->{mask}))));
}
else {
return ( bin2bcd($_[0]->{addr}),
bin2bcd($_[0]->{mask}));
}
}
return (! $_[0]->{isv6} && isIPv4($_[0]->{addr}))
? sprintf("%u",unpack('N',ipv6to4($_[0]->{addr})))
: bin2bcd($_[0]->{addr});
}
=item C<$me-E<gt>contains($other)>
Returns true when C<$me> completely contains C<$other>. False is
returned otherwise and C<undef> is returned if C<$me> and C<$other>
are not both C<NetAddr::IP::Lite> objects.
=cut
sub contains ($$) {
return within(@_[1,0]);
}
=item C<$me-E<gt>within($other)>
The complement of C<-E<gt>contains()>. Returns true when C<$me> is
completely contained within C<$other>, undef if C<$me> and C<$other>
are not both C<NetAddr::IP::Lite> objects.
=cut
sub within ($$) {
return 1 unless hasbits($_[1]->{mask}); # 0x0 contains everything
my $netme = $_[0]->{addr} & $_[0]->{mask};
my $brdme = $_[0]->{addr} | ~ $_[0]->{mask};
my $neto = $_[1]->{addr} & $_[1]->{mask};
my $brdo = $_[1]->{addr} | ~ $_[1]->{mask};
return (sub128($netme,$neto) && sub128($brdo,$brdme))
? 1 : 0;
}
=item C<-E<gt>first()>
Returns a new object representing the first usable IP address within
the subnet (ie, the first host address).
=cut
sub first ($) {
return $_[0]->network + 1;
}
=item C<-E<gt>last()>
Returns a new object representing the last usable IP address within
the subnet (ie, one less than the broadcast address).
=cut
sub last ($) {
return $_[0]->broadcast - 1;
}
=item C<-E<gt>nth($index)>
Returns a new object representing the I<n>-th usable IP address within
the subnet (ie, the I<n>-th host address). If no address is available
(for example, when the network is too small for C<$index> hosts),
C<undef> is returned.
Version 4.00 of NetAddr::IP and version 1.00 of NetAddr::IP::Lite implements
C<-E<gt>nth($index)> and C<-E<gt>num()> exactly as the documentation states.
Previous versions behaved slightly differently and not in a consistent
manner.
To use the old behavior for C<-E<gt>nth($index)> and C<-E<gt>num()>:
use NetAddr::IP::Lite qw(:old_nth);
old behavior:
NetAddr::IP->new('10/32')->nth(0) == undef
NetAddr::IP->new('10/32')->nth(1) == undef
NetAddr::IP->new('10/31')->nth(0) == undef
NetAddr::IP->new('10/31')->nth(1) == 10.0.0.1/31
NetAddr::IP->new('10/30')->nth(0) == undef
NetAddr::IP->new('10/30')->nth(1) == 10.0.0.1/30
NetAddr::IP->new('10/30')->nth(2) == 10.0.0.2/30
NetAddr::IP->new('10/30')->nth(3) == 10.0.0.3/30
Note that in each case, the broadcast address is represented in the
output set and that the 'zero'th index is alway undef.
new behavior:
NetAddr::IP->new('10/32')->nth(0) == 10.0.0.0/32
NetAddr::IP->new('10.1/32'->nth(0) == 10.0.0.1/32
NetAddr::IP->new('10/31')->nth(0) == undef
NetAddr::IP->new('10/31')->nth(1) == undef
NetAddr::IP->new('10/30')->nth(0) == 10.0.0.1/30
NetAddr::IP->new('10/30')->nth(1) == 10.0.0.2/30
NetAddr::IP->new('10/30')->nth(2) == undef
Note that a /32 net always has 1 usable address while a /31 has none since
it has a network and broadcast address, but no host addresses. The first
index (0) returns the address immediately following the network address.
=cut
sub nth ($$) {
my $self = shift;
my $count = shift;
++$count unless ($Old_nth);
return undef if ($count < 1 or $count > $self->num ());
return $self->network + $count;
}
=item C<-E<gt>num()>
Version 4.00 of NetAddr::IP and version 1.00 of NetAddr::IP::Lite
Returns the number of usable addresses IP addresses within the
subnet, not counting the broadcast or network address. Previous versions
returned th number of IP addresses not counting the broadcast address.
To use the old behavior for C<-E<gt>nth($index)> and C<-E<gt>num()>:
use NetAddr::IP::Lite qw(:old_nth);
=cut
sub num ($) {
my @net = unpack('L3N',$_[0]->{mask} ^ Ones);
if ($Old_nth) {
# number of ip's less broadcast
return 0xfffffffe if $net[0] || $net[1] || $net[2]; # 2**32 -1
return $net[3] if $net[3];
} else { # returns 1 for /32 /128, 0 for /31 /127 else n-2 up to 2**32
# number of usable IP's === number of ip's less broadcast & network addys
return 0xfffffffd if $net[0] || $net[1] || $net[2]; # 2**32 -2
return 1 unless $net[3];
$net[3]--;
}
return $net[3];
}
=pod
=back
=cut
sub import {
if (grep { $_ eq ':aton' } @_) {
$Accept_Binary_IP = 1;
@_ = grep { $_ ne ':aton' } @_;
}
if (grep { $_ eq ':old_nth' } @_) {
$Old_nth = 1;
@_ = grep { $_ ne ':old_nth' } @_;
}
NetAddr::IP::Lite->export_to_level(1, @_);
}
=head1 EXPORT_OK
Zeros
Ones
V4mask
V4net
:aton DEPRECATED
:old_nth
=head1 AUTHOR
Luis E. Muoz E<lt>luismunoz@cpan.orgE<gt>,
Michael Robinton E<lt>michael@bizsystems.comE<gt>
=head1 WARRANTY
This software comes with the same warranty as perl itself (ie, none),
so by using it you accept any and all the liability.
=head1 LICENSE
This software is (c) Luis E. Muoz, 1999 - 2005
and (c) Michael Robinton, 2006 - 2008.
It can be used under the terms of the perl artistic license provided that
proper credit for the work of the author is preserved in the form of this
copyright notice and license for this module.
=head1 SEE ALSO
perl(1), NetAddr::IP(3), NetAddr::IP::Util(3)
=cut
1;
|