1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
|
// noiseutils.cpp
//
// Copyright (C) 2003-2005 Jason Bevins
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or (at
// your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License (COPYING.txt) for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this library; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// The developer's email is jlbezigvins@gmzigail.com (for great email, take
// off every 'zig'.)
//
#include <fstream>
#include <noise/interp.h>
#include <noise/mathconsts.h>
#include "noiseutils.h"
using namespace noise;
using namespace noise::model;
using namespace noise::module;
// Bitmap header size.
const int BMP_HEADER_SIZE = 54;
// Direction of the light source, in compass degrees (0 = north, 90 = east,
// 180 = south, 270 = east)
const double DEFAULT_LIGHT_AZIMUTH = 45.0;
// Amount of contrast between light and dark areas.
const double DEFAULT_LIGHT_CONTRAST = 1.0;
// Elevation of the light source above the horizon, in degrees (0 = on
// horizon, 90 = directly overhead)
const double DEFAULT_LIGHT_ELEVATION = 45.0;
//////////////////////////////////////////////////////////////////////////////
// Miscellaneous functions
namespace noise
{
namespace utils
{
// Performs linear interpolation between two 8-bit channel values.
inline noise::uint8 BlendChannel (const uint8 channel0,
const uint8 channel1, float alpha)
{
float c0 = (float)channel0 / 255.0;
float c1 = (float)channel1 / 255.0;
return (noise::uint8)(((c1 * alpha) + (c0 * (1.0f - alpha))) * 255.0f);
}
// Performs linear interpolation between two colors and stores the result
// in out.
inline void LinearInterpColor (const Color& color0, const Color& color1,
float alpha, Color& out)
{
out.alpha = BlendChannel (color0.alpha, color1.alpha, alpha);
out.blue = BlendChannel (color0.blue , color1.blue , alpha);
out.green = BlendChannel (color0.green, color1.green, alpha);
out.red = BlendChannel (color0.red , color1.red , alpha);
}
// Unpacks a floating-point value into four bytes. This function is
// specific to Intel machines. A portable version will come soon (I
// hope.)
inline noise::uint8* UnpackFloat (noise::uint8* bytes, float value)
{
noise::uint8* pBytes = (noise::uint8*)(&value);
bytes[0] = *pBytes++;
bytes[1] = *pBytes++;
bytes[2] = *pBytes++;
bytes[3] = *pBytes++;
return bytes;
}
// Unpacks a 16-bit integer value into two bytes in little endian format.
inline noise::uint8* UnpackLittle16 (noise::uint8* bytes,
noise::uint16 integer)
{
bytes[0] = (noise::uint8)((integer & 0x00ff) );
bytes[1] = (noise::uint8)((integer & 0xff00) >> 8 );
return bytes;
}
// Unpacks a 32-bit integer value into four bytes in little endian format.
inline noise::uint8* UnpackLittle32 (noise::uint8* bytes,
noise::uint32 integer)
{
bytes[0] = (noise::uint8)((integer & 0x000000ff) );
bytes[1] = (noise::uint8)((integer & 0x0000ff00) >> 8 );
bytes[2] = (noise::uint8)((integer & 0x00ff0000) >> 16);
bytes[3] = (noise::uint8)((integer & 0xff000000) >> 24);
return bytes;
}
}
}
using namespace noise;
using namespace noise::utils;
//////////////////////////////////////////////////////////////////////////////
// GradientColor class
GradientColor::GradientColor ()
{
m_pGradientPoints = NULL;
}
GradientColor::~GradientColor ()
{
delete[] m_pGradientPoints;
}
void GradientColor::AddGradientPoint (double gradientPos,
const Color& gradientColor)
{
// Find the insertion point for the new gradient point and insert the new
// gradient point at that insertion point. The gradient point array will
// remain sorted by gradient position.
int insertionPos = FindInsertionPos (gradientPos);
InsertAtPos (insertionPos, gradientPos, gradientColor);
}
void GradientColor::Clear ()
{
delete[] m_pGradientPoints;
m_pGradientPoints = NULL;
m_gradientPointCount = 0;
}
int GradientColor::FindInsertionPos (double gradientPos)
{
int insertionPos;
for (insertionPos = 0; insertionPos < m_gradientPointCount;
insertionPos++) {
if (gradientPos < m_pGradientPoints[insertionPos].pos) {
// We found the array index in which to insert the new gradient point.
// Exit now.
break;
} else if (gradientPos == m_pGradientPoints[insertionPos].pos) {
// Each gradient point is required to contain a unique gradient
// position, so throw an exception.
throw noise::ExceptionInvalidParam ();
}
}
return insertionPos;
}
const Color& GradientColor::GetColor (double gradientPos) const
{
assert (m_gradientPointCount >= 2);
// Find the first element in the gradient point array that has a gradient
// position larger than the gradient position passed to this method.
int indexPos;
for (indexPos = 0; indexPos < m_gradientPointCount; indexPos++) {
if (gradientPos < m_pGradientPoints[indexPos].pos) {
break;
}
}
// Find the two nearest gradient points so that we can perform linear
// interpolation on the color.
int index0 = ClampValue (indexPos - 1, 0, m_gradientPointCount - 1);
int index1 = ClampValue (indexPos , 0, m_gradientPointCount - 1);
// If some gradient points are missing (which occurs if the gradient
// position passed to this method is greater than the largest gradient
// position or less than the smallest gradient position in the array), get
// the corresponding gradient color of the nearest gradient point and exit
// now.
if (index0 == index1) {
m_workingColor = m_pGradientPoints[index1].color;
return m_workingColor;
}
// Compute the alpha value used for linear interpolation.
double input0 = m_pGradientPoints[index0].pos;
double input1 = m_pGradientPoints[index1].pos;
double alpha = (gradientPos - input0) / (input1 - input0);
// Now perform the linear interpolation given the alpha value.
const Color& color0 = m_pGradientPoints[index0].color;
const Color& color1 = m_pGradientPoints[index1].color;
LinearInterpColor (color0, color1, (float)alpha, m_workingColor);
return m_workingColor;
}
void GradientColor::InsertAtPos (int insertionPos, double gradientPos,
const Color& gradientColor)
{
// Make room for the new gradient point at the specified insertion position
// within the gradient point array. The insertion position is determined by
// the gradient point's position; the gradient points must be sorted by
// gradient position within that array.
GradientPoint* newGradientPoints;
newGradientPoints = new GradientPoint[m_gradientPointCount + 1];
for (int i = 0; i < m_gradientPointCount; i++) {
if (i < insertionPos) {
newGradientPoints[i] = m_pGradientPoints[i];
} else {
newGradientPoints[i + 1] = m_pGradientPoints[i];
}
}
delete[] m_pGradientPoints;
m_pGradientPoints = newGradientPoints;
++m_gradientPointCount;
// Now that we've made room for the new gradient point within the array, add
// the new gradient point.
m_pGradientPoints[insertionPos].pos = gradientPos ;
m_pGradientPoints[insertionPos].color = gradientColor;
}
//////////////////////////////////////////////////////////////////////////////
// NoiseMap class
NoiseMap::NoiseMap ()
{
InitObj ();
}
NoiseMap::NoiseMap (int width, int height)
{
InitObj ();
SetSize (width, height);
}
NoiseMap::NoiseMap (const NoiseMap& rhs)
{
InitObj ();
CopyNoiseMap (rhs);
}
NoiseMap::~NoiseMap ()
{
delete[] m_pNoiseMap;
}
NoiseMap& NoiseMap::operator= (const NoiseMap& rhs)
{
CopyNoiseMap (rhs);
return *this;
}
void NoiseMap::Clear (float value)
{
if (m_pNoiseMap != NULL) {
for (int y = 0; y < m_height; y++) {
float* pDest = GetSlabPtr (0, y);
for (int x = 0; x < m_width; x++) {
*pDest++ = value;
}
}
}
}
void NoiseMap::CopyNoiseMap (const NoiseMap& source)
{
// Resize the noise map buffer, then copy the slabs from the source noise
// map buffer to this noise map buffer.
SetSize (source.GetWidth (), source.GetHeight ());
for (int y = 0; y < source.GetHeight (); y++) {
const float* pSource = source.GetConstSlabPtr (0, y);
float* pDest = GetSlabPtr (0, y);
memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float));
}
// Copy the border value as well.
m_borderValue = source.m_borderValue;
}
void NoiseMap::DeleteNoiseMapAndReset ()
{
delete[] m_pNoiseMap;
InitObj ();
}
float NoiseMap::GetValue (int x, int y) const
{
if (m_pNoiseMap != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
return *(GetConstSlabPtr (x, y));
}
}
// The coordinates specified are outside the noise map. Return the border
// value.
return m_borderValue;
}
void NoiseMap::InitObj ()
{
m_pNoiseMap = NULL;
m_height = 0;
m_width = 0;
m_stride = 0;
m_memUsed = 0;
m_borderValue = 0.0;
}
void NoiseMap::ReclaimMem ()
{
size_t newMemUsage = CalcMinMemUsage (m_width, m_height);
if (m_memUsed > newMemUsage) {
// There is wasted memory. Create the smallest buffer that can fit the
// data and copy the data to it.
float* pNewNoiseMap = NULL;
try {
pNewNoiseMap = new float[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
memcpy (pNewNoiseMap, m_pNoiseMap, newMemUsage * sizeof (float));
delete[] m_pNoiseMap;
m_pNoiseMap = pNewNoiseMap;
m_memUsed = newMemUsage;
}
}
void NoiseMap::SetSize (int width, int height)
{
if (width < 0 || height < 0
|| width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) {
// Invalid width or height.
throw noise::ExceptionInvalidParam ();
} else if (width == 0 || height == 0) {
// An empty noise map was specified. Delete it and zero out the size
// member variables.
DeleteNoiseMapAndReset ();
} else {
// A new noise map size was specified. Allocate a new noise map buffer
// unless the current buffer is large enough for the new noise map (we
// don't want costly reallocations going on.)
size_t newMemUsage = CalcMinMemUsage (width, height);
if (m_memUsed < newMemUsage) {
// The new size is too big for the current noise map buffer. We need to
// reallocate.
DeleteNoiseMapAndReset ();
try {
m_pNoiseMap = new float[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
m_memUsed = newMemUsage;
}
m_stride = (int)CalcStride (width);
m_width = width;
m_height = height;
}
}
void NoiseMap::SetValue (int x, int y, float value)
{
if (m_pNoiseMap != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
*(GetSlabPtr (x, y)) = value;
}
}
}
void NoiseMap::TakeOwnership (NoiseMap& source)
{
// Copy the values and the noise map buffer from the source noise map to
// this noise map. Now this noise map pwnz the source buffer.
delete[] m_pNoiseMap;
m_memUsed = source.m_memUsed;
m_height = source.m_height;
m_pNoiseMap = source.m_pNoiseMap;
m_stride = source.m_stride;
m_width = source.m_width;
// Now that the source buffer is assigned to this noise map, reset the
// source noise map object.
source.InitObj ();
}
//////////////////////////////////////////////////////////////////////////////
// Image class
Image::Image ()
{
InitObj ();
}
Image::Image (int width, int height)
{
InitObj ();
SetSize (width, height);
}
Image::Image (const Image& rhs)
{
InitObj ();
CopyImage (rhs);
}
Image::~Image ()
{
delete[] m_pImage;
}
Image& Image::operator= (const Image& rhs)
{
CopyImage (rhs);
return *this;
}
void Image::Clear (const Color& value)
{
if (m_pImage != NULL) {
for (int y = 0; y < m_height; y++) {
Color* pDest = GetSlabPtr (0, y);
for (int x = 0; x < m_width; x++) {
*pDest++ = value;
}
}
}
}
void Image::CopyImage (const Image& source)
{
// Resize the image buffer, then copy the slabs from the source image
// buffer to this image buffer.
SetSize (source.GetWidth (), source.GetHeight ());
for (int y = 0; y < source.GetHeight (); y++) {
const Color* pSource = source.GetConstSlabPtr (0, y);
Color* pDest = GetSlabPtr (0, y);
memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float));
}
// Copy the border value as well.
m_borderValue = source.m_borderValue;
}
void Image::DeleteImageAndReset ()
{
delete[] m_pImage;
InitObj ();
}
Color Image::GetValue (int x, int y) const
{
if (m_pImage != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
return *(GetConstSlabPtr (x, y));
}
}
// The coordinates specified are outside the image. Return the border
// value.
return m_borderValue;
}
void Image::InitObj ()
{
m_pImage = NULL;
m_height = 0;
m_width = 0;
m_stride = 0;
m_memUsed = 0;
m_borderValue = Color (0, 0, 0, 0);
}
void Image::ReclaimMem ()
{
size_t newMemUsage = CalcMinMemUsage (m_width, m_height);
if (m_memUsed > newMemUsage) {
// There is wasted memory. Create the smallest buffer that can fit the
// data and copy the data to it.
Color* pNewImage = NULL;
try {
pNewImage = new Color[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
memcpy (pNewImage, m_pImage, newMemUsage * sizeof (float));
delete[] m_pImage;
m_pImage = pNewImage;
m_memUsed = newMemUsage;
}
}
void Image::SetSize (int width, int height)
{
if (width < 0 || height < 0
|| width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) {
// Invalid width or height.
throw noise::ExceptionInvalidParam ();
} else if (width == 0 || height == 0) {
// An empty image was specified. Delete it and zero out the size member
// variables.
DeleteImageAndReset ();
} else {
// A new image size was specified. Allocate a new image buffer unless
// the current buffer is large enough for the new image (we don't want
// costly reallocations going on.)
size_t newMemUsage = CalcMinMemUsage (width, height);
if (m_memUsed < newMemUsage) {
// The new size is too big for the current image buffer. We need to
// reallocate.
DeleteImageAndReset ();
try {
m_pImage = new Color[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
m_memUsed = newMemUsage;
}
m_stride = (int)CalcStride (width);
m_width = width;
m_height = height;
}
}
void Image::SetValue (int x, int y, const Color& value)
{
if (m_pImage != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
*(GetSlabPtr (x, y)) = value;
}
}
}
void Image::TakeOwnership (Image& source)
{
// Copy the values and the image buffer from the source image to this image.
// Now this image pwnz the source buffer.
delete[] m_pImage;
m_memUsed = source.m_memUsed;
m_height = source.m_height;
m_pImage = source.m_pImage;
m_stride = source.m_stride;
m_width = source.m_width;
// Now that the source buffer is assigned to this image, reset the source
// image object.
source.InitObj ();
}
/////////////////////////////////////////////////////////////////////////////
// WriterBMP class
int WriterBMP::CalcWidthByteCount (int width) const
{
return ((width * 3) + 3) & ~0x03;
}
void WriterBMP::WriteDestFile ()
{
if (m_pSourceImage == NULL) {
throw noise::ExceptionInvalidParam ();
}
int width = m_pSourceImage->GetWidth ();
int height = m_pSourceImage->GetHeight ();
// The width of one line in the file must be aligned on a 4-byte boundary.
int bufferSize = CalcWidthByteCount (width);
int destSize = bufferSize * height;
// This buffer holds one horizontal line in the destination file.
noise::uint8* pLineBuffer = NULL;
// File object used to write the file.
std::ofstream os;
os.clear ();
// Allocate a buffer to hold one horizontal line in the bitmap.
try {
pLineBuffer = new noise::uint8[bufferSize];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
// Open the destination file.
os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary);
if (os.fail () || os.bad ()) {
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build the header.
noise::uint8 d[4];
os.write ("BM", 2);
os.write ((char*)UnpackLittle32 (d, destSize + BMP_HEADER_SIZE), 4);
os.write ("\0\0\0\0", 4);
os.write ((char*)UnpackLittle32 (d, (noise::uint32)BMP_HEADER_SIZE), 4);
os.write ((char*)UnpackLittle32 (d, 40), 4); // Palette offset
os.write ((char*)UnpackLittle32 (d, (noise::uint32)width ), 4);
os.write ((char*)UnpackLittle32 (d, (noise::uint32)height), 4);
os.write ((char*)UnpackLittle16 (d, 1 ), 2); // Planes per pixel
os.write ((char*)UnpackLittle16 (d, 24), 2); // Bits per plane
os.write ("\0\0\0\0", 4); // Compression (0 = none)
os.write ((char*)UnpackLittle32 (d, (noise::uint32)destSize), 4);
os.write ((char*)UnpackLittle32 (d, 2834), 4); // X pixels per meter
os.write ((char*)UnpackLittle32 (d, 2834), 4); // Y pixels per meter
os.write ("\0\0\0\0", 4);
os.write ("\0\0\0\0", 4);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build and write each horizontal line to the file.
for (int y = 0; y < height; y++) {
memset (pLineBuffer, 0, bufferSize);
Color* pSource = m_pSourceImage->GetSlabPtr (y);
noise::uint8* pDest = pLineBuffer;
for (int x = 0; x < width; x++) {
*pDest++ = pSource->blue ;
*pDest++ = pSource->green;
*pDest++ = pSource->red ;
++pSource;
}
os.write ((char*)pLineBuffer, (size_t)bufferSize);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
}
os.close ();
os.clear ();
delete[] pLineBuffer;
}
/////////////////////////////////////////////////////////////////////////////
// WriterTER class
int WriterTER::CalcWidthByteCount (int width) const
{
return (width * sizeof (int16));
}
void WriterTER::WriteDestFile ()
{
if (m_pSourceNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
int width = m_pSourceNoiseMap->GetWidth ();
int height = m_pSourceNoiseMap->GetHeight ();
int bufferSize = CalcWidthByteCount (width);
int destSize = bufferSize * height;
// This buffer holds one horizontal line in the destination file.
noise::uint8* pLineBuffer = NULL;
// File object used to write the file.
std::ofstream os;
os.clear ();
// Allocate a buffer to hold one horizontal line in the height map.
try {
pLineBuffer = new noise::uint8[bufferSize];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
// Open the destination file.
os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary);
if (os.fail () || os.bad ()) {
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build the header.
noise::uint8 d[4];
int16 heightScale = (int16)(floor (32768.0 / (double)m_metersPerPoint));
os.write ("TERRAGENTERRAIN ", 16);
os.write ("SIZE", 4);
os.write ((char*)UnpackLittle16 (d, GetMin (width, height) - 1), 2);
os.write ("\0\0", 2);
os.write ("XPTS", 4);
os.write ((char*)UnpackLittle16 (d, width), 2);
os.write ("\0\0", 2);
os.write ("YPTS", 4);
os.write ((char*)UnpackLittle16 (d, height), 2);
os.write ("\0\0", 2);
os.write ("SCAL", 4);
os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4);
os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4);
os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4);
os.write ("ALTW", 4);
os.write ((char*)UnpackLittle16 (d, heightScale), 2);
os.write ("\0\0", 2);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build and write each horizontal line to the file.
for (int y = 0; y < height; y++) {
float* pSource = m_pSourceNoiseMap->GetSlabPtr (y);
noise::uint8* pDest = pLineBuffer;
for (int x = 0; x < width; x++) {
int16 scaledHeight = (int16)(floor (*pSource * 2.0));
UnpackLittle16 (pDest, scaledHeight);
pDest += 2;
++pSource;
}
os.write ((char*)pLineBuffer, (size_t)bufferSize);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
}
os.close ();
os.clear ();
delete[] pLineBuffer;
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilder class
NoiseMapBuilder::NoiseMapBuilder ():
m_pCallback (NULL),
m_destHeight (0),
m_destWidth (0),
m_pDestNoiseMap (NULL),
m_pSourceModule (NULL)
{
}
void NoiseMapBuilder::SetCallback (NoiseMapCallback pCallback)
{
m_pCallback = pCallback;
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilderCylinder class
NoiseMapBuilderCylinder::NoiseMapBuilderCylinder ():
m_lowerAngleBound (0.0),
m_lowerHeightBound (0.0),
m_upperAngleBound (0.0),
m_upperHeightBound (0.0)
{
}
void NoiseMapBuilderCylinder::Build ()
{
if ( m_upperAngleBound <= m_lowerAngleBound
|| m_upperHeightBound <= m_lowerHeightBound
|| m_destWidth <= 0
|| m_destHeight <= 0
|| m_pSourceModule == NULL
|| m_pDestNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
// Resize the destination noise map so that it can store the new output
// values from the source model.
m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight);
// Create the cylinder model.
model::Cylinder cylinderModel;
cylinderModel.SetModule (*m_pSourceModule);
double angleExtent = m_upperAngleBound - m_lowerAngleBound ;
double heightExtent = m_upperHeightBound - m_lowerHeightBound;
double xDelta = angleExtent / (double)m_destWidth ;
double yDelta = heightExtent / (double)m_destHeight;
double curAngle = m_lowerAngleBound ;
double curHeight = m_lowerHeightBound;
// Fill every point in the noise map with the output values from the model.
for (int y = 0; y < m_destHeight; y++) {
float* pDest = m_pDestNoiseMap->GetSlabPtr (y);
curAngle = m_lowerAngleBound;
for (int x = 0; x < m_destWidth; x++) {
float curValue = (float)cylinderModel.GetValue (curAngle, curHeight);
*pDest++ = curValue;
curAngle += xDelta;
}
curHeight += yDelta;
if (m_pCallback != NULL) {
m_pCallback (y);
}
}
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilderPlane class
NoiseMapBuilderPlane::NoiseMapBuilderPlane ():
m_isSeamlessEnabled (false),
m_lowerXBound (0.0),
m_lowerZBound (0.0),
m_upperXBound (0.0),
m_upperZBound (0.0)
{
}
void NoiseMapBuilderPlane::Build ()
{
if ( m_upperXBound <= m_lowerXBound
|| m_upperZBound <= m_lowerZBound
|| m_destWidth <= 0
|| m_destHeight <= 0
|| m_pSourceModule == NULL
|| m_pDestNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
// Resize the destination noise map so that it can store the new output
// values from the source model.
m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight);
// Create the plane model.
model::Plane planeModel;
planeModel.SetModule (*m_pSourceModule);
double xExtent = m_upperXBound - m_lowerXBound;
double zExtent = m_upperZBound - m_lowerZBound;
double xDelta = xExtent / (double)m_destWidth ;
double zDelta = zExtent / (double)m_destHeight;
double xCur = m_lowerXBound;
double zCur = m_lowerZBound;
// Fill every point in the noise map with the output values from the model.
for (int z = 0; z < m_destHeight; z++) {
float* pDest = m_pDestNoiseMap->GetSlabPtr (z);
xCur = m_lowerXBound;
for (int x = 0; x < m_destWidth; x++) {
float finalValue;
if (!m_isSeamlessEnabled) {
finalValue = planeModel.GetValue (xCur, zCur);
} else {
double swValue, seValue, nwValue, neValue;
swValue = planeModel.GetValue (xCur , zCur );
seValue = planeModel.GetValue (xCur + xExtent, zCur );
nwValue = planeModel.GetValue (xCur , zCur + zExtent);
neValue = planeModel.GetValue (xCur + xExtent, zCur + zExtent);
double xBlend = 1.0 - ((xCur - m_lowerXBound) / xExtent);
double zBlend = 1.0 - ((zCur - m_lowerZBound) / zExtent);
double z0 = LinearInterp (swValue, seValue, xBlend);
double z1 = LinearInterp (nwValue, neValue, xBlend);
finalValue = (float)LinearInterp (z0, z1, zBlend);
}
*pDest++ = finalValue;
xCur += xDelta;
}
zCur += zDelta;
if (m_pCallback != NULL) {
m_pCallback (z);
}
}
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilderSphere class
NoiseMapBuilderSphere::NoiseMapBuilderSphere ():
m_eastLonBound (0.0),
m_northLatBound (0.0),
m_southLatBound (0.0),
m_westLonBound (0.0)
{
}
void NoiseMapBuilderSphere::Build ()
{
if ( m_eastLonBound <= m_westLonBound
|| m_northLatBound <= m_southLatBound
|| m_destWidth <= 0
|| m_destHeight <= 0
|| m_pSourceModule == NULL
|| m_pDestNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
// Resize the destination noise map so that it can store the new output
// values from the source model.
m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight);
// Create the plane model.
model::Sphere sphereModel;
sphereModel.SetModule (*m_pSourceModule);
double lonExtent = m_eastLonBound - m_westLonBound ;
double latExtent = m_northLatBound - m_southLatBound;
double xDelta = lonExtent / (double)m_destWidth ;
double yDelta = latExtent / (double)m_destHeight;
double curLon = m_westLonBound ;
double curLat = m_southLatBound;
// Fill every point in the noise map with the output values from the model.
for (int y = 0; y < m_destHeight; y++) {
float* pDest = m_pDestNoiseMap->GetSlabPtr (y);
curLon = m_westLonBound;
for (int x = 0; x < m_destWidth; x++) {
float curValue = (float)sphereModel.GetValue (curLat, curLon);
*pDest++ = curValue;
curLon += xDelta;
}
curLat += yDelta;
if (m_pCallback != NULL) {
m_pCallback (y);
}
}
}
//////////////////////////////////////////////////////////////////////////////
// RendererImage class
RendererImage::RendererImage ():
m_isLightEnabled (false),
m_isWrapEnabled (false),
m_lightAzimuth (45.0),
m_lightBrightness (1.0),
m_lightColor (255, 255, 255, 255),
m_lightContrast (1.0),
m_lightElev (45.0),
m_lightIntensity (1.0),
m_pBackgroundImage (NULL),
m_pDestImage (NULL),
m_pSourceNoiseMap (NULL),
m_recalcLightValues (true)
{
BuildGrayscaleGradient ();
};
void RendererImage::AddGradientPoint (double gradientPos,
const Color& gradientColor)
{
m_gradient.AddGradientPoint (gradientPos, gradientColor);
}
void RendererImage::BuildGrayscaleGradient ()
{
ClearGradient ();
m_gradient.AddGradientPoint (-1.0, Color ( 0, 0, 0, 255));
m_gradient.AddGradientPoint ( 1.0, Color (255, 255, 255, 255));
}
void RendererImage::BuildTerrainGradient ()
{
ClearGradient ();
m_gradient.AddGradientPoint (-1.00, Color ( 0, 0, 128, 255));
m_gradient.AddGradientPoint (-0.20, Color ( 32, 64, 128, 255));
m_gradient.AddGradientPoint (-0.04, Color ( 64, 96, 192, 255));
m_gradient.AddGradientPoint (-0.02, Color (192, 192, 128, 255));
m_gradient.AddGradientPoint ( 0.00, Color ( 0, 192, 0, 255));
m_gradient.AddGradientPoint ( 0.25, Color (192, 192, 0, 255));
m_gradient.AddGradientPoint ( 0.50, Color (160, 96, 64, 255));
m_gradient.AddGradientPoint ( 0.75, Color (128, 255, 255, 255));
m_gradient.AddGradientPoint ( 1.00, Color (255, 255, 255, 255));
}
Color RendererImage::CalcDestColor (const Color& sourceColor,
const Color& backgroundColor, double lightValue) const
{
double sourceRed = (double)sourceColor.red / 255.0;
double sourceGreen = (double)sourceColor.green / 255.0;
double sourceBlue = (double)sourceColor.blue / 255.0;
double sourceAlpha = (double)sourceColor.alpha / 255.0;
double backgroundRed = (double)backgroundColor.red / 255.0;
double backgroundGreen = (double)backgroundColor.green / 255.0;
double backgroundBlue = (double)backgroundColor.blue / 255.0;
// First, blend the source color to the background color using the alpha
// of the source color.
double red = LinearInterp (backgroundRed, sourceRed , sourceAlpha);
double green = LinearInterp (backgroundGreen, sourceGreen, sourceAlpha);
double blue = LinearInterp (backgroundBlue, sourceBlue , sourceAlpha);
if (m_isLightEnabled) {
// Now calculate the light color.
double lightRed = lightValue * (double)m_lightColor.red / 255.0;
double lightGreen = lightValue * (double)m_lightColor.green / 255.0;
double lightBlue = lightValue * (double)m_lightColor.blue / 255.0;
// Apply the light color to the new color.
red *= lightRed ;
green *= lightGreen;
blue *= lightBlue ;
}
// Clamp the color channels to the (0..1) range.
red = (red < 0.0)? 0.0: red ;
red = (red > 1.0)? 1.0: red ;
green = (green < 0.0)? 0.0: green;
green = (green > 1.0)? 1.0: green;
blue = (blue < 0.0)? 0.0: blue ;
blue = (blue > 1.0)? 1.0: blue ;
// Rescale the color channels to the noise::uint8 (0..255) range and return
// the new color.
Color newColor (
(noise::uint8)((noise::uint)(red * 255.0) & 0xff),
(noise::uint8)((noise::uint)(green * 255.0) & 0xff),
(noise::uint8)((noise::uint)(blue * 255.0) & 0xff),
GetMax (sourceColor.alpha, backgroundColor.alpha));
return newColor;
}
double RendererImage::CalcLightIntensity (double center, double left,
double right, double down, double up) const
{
// Recalculate the sine and cosine of the various light values if
// necessary so it does not have to be calculated each time this method is
// called.
if (m_recalcLightValues) {
m_cosAzimuth = cos (m_lightAzimuth * DEG_TO_RAD);
m_sinAzimuth = sin (m_lightAzimuth * DEG_TO_RAD);
m_cosElev = cos (m_lightElev * DEG_TO_RAD);
m_sinElev = sin (m_lightElev * DEG_TO_RAD);
m_recalcLightValues = false;
}
// Now do the lighting calculations.
const double I_MAX = 1.0;
double io = I_MAX * SQRT_2 * m_sinElev / 2.0;
double ix = (I_MAX - io) * m_lightContrast * SQRT_2 * m_cosElev
* m_cosAzimuth;
double iy = (I_MAX - io) * m_lightContrast * SQRT_2 * m_cosElev
* m_sinAzimuth;
double intensity = (ix * (left - right) + iy * (down - up) + io);
if (intensity < 0.0) {
intensity = 0.0;
}
return intensity;
}
void RendererImage::ClearGradient ()
{
m_gradient.Clear ();
}
void RendererImage::Render ()
{
if ( m_pSourceNoiseMap == NULL
|| m_pDestImage == NULL
|| m_pSourceNoiseMap->GetWidth () <= 0
|| m_pSourceNoiseMap->GetHeight () <= 0
|| m_gradient.GetGradientPointCount () < 2) {
throw noise::ExceptionInvalidParam ();
}
int width = m_pSourceNoiseMap->GetWidth ();
int height = m_pSourceNoiseMap->GetHeight ();
// If a background image was provided, make sure it is the same size the
// source noise map.
if (m_pBackgroundImage != NULL) {
if ( m_pBackgroundImage->GetWidth () != width
|| m_pBackgroundImage->GetHeight () != height) {
throw noise::ExceptionInvalidParam ();
}
}
// Create the destination image. It is safe to reuse it if this is also the
// background image.
if (m_pDestImage != m_pBackgroundImage) {
m_pDestImage->SetSize (width, height);
}
for (int y = 0; y < height; y++) {
const Color* pBackground = NULL;
if (m_pBackgroundImage != NULL) {
pBackground = m_pBackgroundImage->GetConstSlabPtr (y);
}
const float* pSource = m_pSourceNoiseMap->GetConstSlabPtr (y);
Color* pDest = m_pDestImage->GetSlabPtr (y);
for (int x = 0; x < width; x++) {
// Get the color based on the value at the current point in the noise
// map.
Color destColor = m_gradient.GetColor (*pSource);
// If lighting is enabled, calculate the light intensity based on the
// rate of change at the current point in the noise map.
double lightIntensity;
if (m_isLightEnabled) {
// Calculate the positions of the current point's four-neighbors.
int xLeftOffset, xRightOffset;
int yUpOffset , yDownOffset ;
if (m_isWrapEnabled) {
if (x == 0) {
xLeftOffset = (int)width - 1;
xRightOffset = 1;
} else if (x == (int)width - 1) {
xLeftOffset = -1;
xRightOffset = -((int)width - 1);
} else {
xLeftOffset = -1;
xRightOffset = 1;
}
if (y == 0) {
yDownOffset = (int)height - 1;
yUpOffset = 1;
} else if (y == (int)height - 1) {
yDownOffset = -1;
yUpOffset = -((int)height - 1);
} else {
yDownOffset = -1;
yUpOffset = 1;
}
} else {
if (x == 0) {
xLeftOffset = 0;
xRightOffset = 1;
} else if (x == (int)width - 1) {
xLeftOffset = -1;
xRightOffset = 0;
} else {
xLeftOffset = -1;
xRightOffset = 1;
}
if (y == 0) {
yDownOffset = 0;
yUpOffset = 1;
} else if (y == (int)height - 1) {
yDownOffset = -1;
yUpOffset = 0;
} else {
yDownOffset = -1;
yUpOffset = 1;
}
}
yDownOffset *= m_pSourceNoiseMap->GetStride ();
yUpOffset *= m_pSourceNoiseMap->GetStride ();
// Get the noise value of the current point in the source noise map
// and the noise values of its four-neighbors.
double nc = (double)(*pSource);
double nl = (double)(*(pSource + xLeftOffset ));
double nr = (double)(*(pSource + xRightOffset));
double nd = (double)(*(pSource + yDownOffset ));
double nu = (double)(*(pSource + yUpOffset ));
// Now we can calculate the lighting intensity.
lightIntensity = CalcLightIntensity (nc, nl, nr, nd, nu);
lightIntensity *= m_lightBrightness;
} else {
// These values will apply no lighting to the destination image.
lightIntensity = 1.0;
}
// Get the current background color from the background image.
Color backgroundColor (255, 255, 255, 255);
if (m_pBackgroundImage != NULL) {
backgroundColor = *pBackground;
}
// Blend the destination color, background color, and the light
// intensity together, then update the destination image with that
// color.
*pDest = CalcDestColor (destColor, backgroundColor, lightIntensity);
// Go to the next point.
++pSource;
++pDest;
if (m_pBackgroundImage != NULL) {
++pBackground;
}
}
}
}
//////////////////////////////////////////////////////////////////////////////
// RendererNormalMap class
RendererNormalMap::RendererNormalMap ():
m_bumpHeight (1.0),
m_isWrapEnabled (false),
m_pDestImage (NULL),
m_pSourceNoiseMap (NULL)
{
};
Color RendererNormalMap::CalcNormalColor (double nc, double nr, double nu,
double bumpHeight) const
{
// Calculate the surface normal.
nc *= bumpHeight;
nr *= bumpHeight;
nu *= bumpHeight;
double ncr = (nc - nr);
double ncu = (nc - nu);
double d = sqrt ((ncu * ncu) + (ncr * ncr) + 1);
double vxc = (nc - nr) / d;
double vyc = (nc - nu) / d;
double vzc = 1.0 / d;
// Map the normal range from the (-1.0 .. +1.0) range to the (0 .. 255)
// range.
noise::uint8 xc, yc, zc;
xc = (noise::uint8)((noise::uint)((floor)((vxc + 1.0) * 127.5)) & 0xff);
yc = (noise::uint8)((noise::uint)((floor)((vyc + 1.0) * 127.5)) & 0xff);
zc = (noise::uint8)((noise::uint)((floor)((vzc + 1.0) * 127.5)) & 0xff);
return Color (xc, yc, zc, 0);
}
void RendererNormalMap::Render ()
{
if ( m_pSourceNoiseMap == NULL
|| m_pDestImage == NULL
|| m_pSourceNoiseMap->GetWidth () <= 0
|| m_pSourceNoiseMap->GetHeight () <= 0) {
throw noise::ExceptionInvalidParam ();
}
int width = m_pSourceNoiseMap->GetWidth ();
int height = m_pSourceNoiseMap->GetHeight ();
for (int y = 0; y < height; y++) {
const float* pSource = m_pSourceNoiseMap->GetConstSlabPtr (y);
Color* pDest = m_pDestImage->GetSlabPtr (y);
for (int x = 0; x < width; x++) {
// Calculate the positions of the current point's right and up
// neighbors.
int xRightOffset, yUpOffset;
if (m_isWrapEnabled) {
if (x == (int)width - 1) {
xRightOffset = -((int)width - 1);
} else {
xRightOffset = 1;
}
if (y == (int)height - 1) {
yUpOffset = -((int)height - 1);
} else {
yUpOffset = 1;
}
} else {
if (x == (int)width - 1) {
xRightOffset = 0;
} else {
xRightOffset = 1;
}
if (y == (int)height - 1) {
yUpOffset = 0;
} else {
yUpOffset = 1;
}
}
yUpOffset *= m_pSourceNoiseMap->GetStride ();
// Get the noise value of the current point in the source noise map
// and the noise values of its right and up neighbors.
double nc = (double)(*pSource);
double nr = (double)(*(pSource + xRightOffset));
double nu = (double)(*(pSource + yUpOffset ));
// Calculate the normal product.
*pDest = CalcNormalColor (nc, nr, nu, m_bumpHeight);
// Go to the next point.
++pSource;
++pDest;
}
}
}
|