1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
// Copyright 2017 The Native Object Protocols Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <array>
#include <iostream>
#include <sstream>
#include <vector>
#include <nop/protocol.h>
#include <nop/serializer.h>
#include <nop/structure.h>
#include <nop/status.h>
#include <nop/utility/die.h>
#include <nop/utility/stream_reader.h>
#include <nop/utility/stream_writer.h>
#include "stream_utilities.h"
#include "string_to_hex.h"
using nop::Deserializer;
using nop::ErrorStatus;
using nop::Protocol;
using nop::Serializer;
using nop::Status;
using nop::StreamReader;
using nop::StreamWriter;
using nop::StringToHex;
//
// simple_protocol.cpp - Example of using compile-time protocol and fungible
// types.
//
// A protocol type is a C++ type that sepcifies the valid data format of a
// particular datum in a defined communication protocol.
//
// The protocol system supports the notion of fungible types: types that are
// fungible produce the same wire format and can be used interchangeably when
// calling the serialization engine. The class nop::Protocol provides a simple
// way to verify that code conforms to a type-safe protocol by checking that the
// types passed to its Read/Write methods are fungible with the given protocol
// type to check against.
//
// This example demonstrates writing data using several fungible types of
// integer containers to a stream and then reading the data out into a
// std::vector. The example also includes a simple header check to validate the
// protocol as a whole.
//
namespace {
// A simple header with magic value and version numbers.
struct Header {
enum : std::uint32_t { kMagic = 0xdeadbeef };
enum : std::uint32_t { kVersionMajor = 1, kVersionMinor = 0 };
// Returns a Header instance with magic and version numbers set.
static Header Make() { return {kMagic, kVersionMajor, kVersionMinor}; }
// Returns true if the magic and major version numbers match the constants.
// The minor version is not checked.
explicit operator bool() const {
return magic == kMagic && version_major == kVersionMajor;
}
// Data members that comprise the header and define its wire format.
std::uint32_t magic;
std::uint32_t version_major;
std::uint32_t version_minor;
// Make this header type serializable by describing it to the serialization
// engine..
NOP_STRUCTURE(Header, magic, version_major, version_minor);
};
// Protocol type for the header of the message.
using HeaderProto = Protocol<Header>;
// Protocol type for the body of the message.
using BodyProto = Protocol<std::vector<int>>;
// Writes a message with four integers in the message body. In this instance the
// length of the body is always the same, so std::array is used in place of
// std::vector to avoid dynamic allocation. This is allowed by the protocol
// system because std::array<T> is fungible with std::vector<T> for the same
// type T.
template <typename Serializer>
Status<void> WriteMessage(Serializer* serializer, int a, int b, int c, int d) {
auto status = HeaderProto::Write(serializer, Header::Make());
if (!status)
return status;
return BodyProto::Write(serializer, std::array<int, 4>{{a, b, c, d}});
}
// Writes a message with a compile-time sized std::array of integers in the
// message body. Like the overload above, this instance uses std::array in place
// of std::vector to avoid dynamic allocation.
template <typename Serializer, std::size_t Size>
Status<void> WriteMessage(Serializer* serializer,
const std::array<int, Size>& array) {
auto status = HeaderProto::Write(serializer, Header::Make());
if (!status)
return status;
return BodyProto::Write(serializer, array);
};
// Writes a message with a compile-time sized array of integers in the message
// body. Regular arrays may also be used in place of std::vector.
template <typename Serializer, std::size_t Size>
Status<void> WriteMessage(Serializer* serializer, const int (&array)[Size]) {
auto status = HeaderProto::Write(serializer, Header::Make());
if (!status)
return status;
return BodyProto::Write(serializer, array);
}
// Writes a message with a std::vector of integers in the message body.
template <typename Serializer>
Status<void> WriteMessage(Serializer* serializer,
const std::vector<int>& vector) {
auto status = HeaderProto::Write(serializer, Header::Make());
if (!status)
return status;
return BodyProto::Write(serializer, vector);
}
// Reads a message by first reading and validating the header and then reading
// the body. Returns the body as a std::vector<int>.
template <typename Deserializer>
Status<std::vector<int>> ReadMessage(Deserializer* deserializer) {
Header header;
auto status = HeaderProto::Read(deserializer, &header);
if (!status)
return status.error();
else if (!header)
return ErrorStatus::ProtocolError;
std::vector<int> body;
status = BodyProto::Read(deserializer, &body);
if (!status)
return status.error();
return {std::move(body)};
}
// Prints an error message to std::cerr when the Status<T> || Die() expression
// evaluates to false.
auto Die() { return nop::Die(std::cerr); }
} // anonymous namespace
int main(int /*argc*/, char** /*argv*/) {
// Construct a serializer to output to a std::stringstream.
Serializer<StreamWriter<std::stringstream>> serializer;
// Write a message to the stream using the first overload of WriteMessage.
WriteMessage(&serializer, 1, 2, 3, 4) || Die();
// Write a message to the stream using the second overload of WriteMessage.
WriteMessage(&serializer, std::array<int, 6>{{5, 6, 7, 8, 9, 10}}) || Die();
// Write a message to the stream using the third overload of WriteMessage.
WriteMessage(&serializer, {11, 22, 33, 44, 55, 66, 77, 88, 99}) || Die();
// Write a message to the stream using the fourth overload of WriteMessage.
WriteMessage(&serializer, std::vector<int>(42, 20)) || Die();
// Print the serialized buffer in hexadecimal to demonstrate the wire format.
std::cout << "Serialized data: "
<< StringToHex(serializer.writer().stream().str()) << std::endl;
// Construct a deserializer to read from a std::stringstream and pass it the
// serialized data from the serializer.
Deserializer<StreamReader<std::stringstream>> deserializer{
std::move(serializer.writer().stream())};
// Read the messages written by each overload of WriteMessage and print the
// resulting values.
for (int i = 0; i < 4; i++) {
auto return_status = ReadMessage(&deserializer) || Die();
std::cout << "Read: " << return_status.get() << std::endl;
}
return 0;
}
|