File: comet.c

package info (click to toggle)
libnova 0.12.1-1
  • links: PTS
  • area: main
  • in suites: lenny, squeeze
  • size: 7,060 kB
  • ctags: 1,032
  • sloc: ansic: 81,252; sh: 7,906; makefile: 134
file content (148 lines) | stat: -rw-r--r-- 4,657 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 

Copyright (C) 2003 Liam Girdwood <liam@gnova.org>


A simple example showing some comet calculations.

Comet Enckle

*/

#include <stdio.h>
#include <libnova/comet.h>
#include <libnova/julian_day.h>
#include <libnova/rise_set.h>
#include <libnova/transform.h>
#include <libnova/elliptic_motion.h>

void print_date (char * title, struct ln_zonedate* date)
{
	printf ("\n%s\n",title);
	printf (" Year    : %d\n", date->years);
	printf (" Month   : %d\n", date->months);
	printf (" Day     : %d\n", date->days);
	printf (" Hours   : %d\n", date->hours);
	printf (" Minutes : %d\n", date->minutes);
	printf (" Seconds : %f\n", date->seconds);
	printf("gmtoff %ld\n", date->gmtoff);
}

int main (int argc, char * argv[])
{
	struct ln_equ_posn equ;
	struct ln_rst_time rst;
	struct ln_zonedate rise, set, transit;
	struct ln_date epoch_date;
	struct ln_lnlat_posn observer;
	struct ln_ell_orbit orbit;
	struct ln_rect_posn posn;
	double JD, e_JD;
	double E, v, V, r, l, dist;
	
	/* observers location (Edinburgh), used to calc rst */
	observer.lat = 55.92; /* 55.92 N */
	observer.lng = -3.18; /* 3.18 W */
	
	/* get Julian day from local time */
	JD = ln_get_julian_from_sys();	
	printf ("JD %f\n", JD);
	
	/* calc epoch JD */
	epoch_date.years = 1990;
	epoch_date.months = 10;
	epoch_date.days = 28;
	epoch_date.hours = 12;
	epoch_date.minutes = 30;
	epoch_date.seconds = 0;
	e_JD = ln_get_julian_day (&epoch_date);
	
	/* Enckle orbital elements */
	orbit.JD = e_JD;
	orbit.a = 2.2091404;
	orbit.e = 0.8502196;
	orbit.i = 11.94525;
	orbit.omega = 334.75006;
	orbit.w = 186.23352;
	orbit.n = 0;
	
	/* solve kepler for orbit */
	E = ln_solve_kepler (0.1, 5.0);
	printf("(Equation of kepler) E when e is 0.1 and M is 5.0  %f\n ", E);
	
	/* true anomaly */
	v = ln_get_ell_true_anomaly (0.1, E);
	printf("(True Anomaly) v when e is 0.1 and E is 5.5545  %f\n ", v);
	
	/* radius vector */
	r = ln_get_ell_radius_vector (0.5, 0.1, E);
	printf ("(Radius Vector) r when v is , e is 0.1 and E is 5.5545  %f\n ", r);
	
	/* geocentric rect coords */
	ln_get_ell_geo_rect_posn (&orbit, JD, &posn);
	printf ("(Geocentric Rect Coords X) for comet Enckle  %f\n", posn.X);
	printf ("(Geocentric Rect Coords Y) for comet Enckle  %f\n", posn.Y);
	printf ("(Geocentric Rect Coords Z) for comet Enckle  %f\n", posn.Z);
	
	/* rectangular coords */
	ln_get_ell_helio_rect_posn (&orbit, JD, &posn);
	printf ("(Heliocentric Rect Coords X) for comet Enckle  %f\n ", posn.X);
	printf ("(Heliocentric Rect Coords Y) for comet Enckle  %f\n ", posn.Y);
	printf ("(Heliocentric Rect Coords Z) for comet Enckle  %f\n ", posn.Z);
	
	/* ra, dec */
	ln_get_ell_body_equ_coords (JD, &orbit, &equ);
	printf ("(RA) for comet Enckle  %f\n ", equ.ra);
	printf ("(Dec) for comet Enckle  %f\n ", equ.dec);
	
	/* orbit length */
	l = ln_get_ell_orbit_len (&orbit);
	printf ("(Orbit Length) for comet Enckle in AU  %f\n ", l);
	
	/* orbital velocity at perihelion */
	V = ln_get_ell_orbit_pvel (&orbit);
	printf ("(Orbit Perihelion Vel) for comet Enckle in kms  %f\n ", V);
	
	/* orbital velocity at aphelion */
	V = ln_get_ell_orbit_avel (&orbit);
	printf ("(Orbit Aphelion Vel) for comet Enckle in kms  %f\n ", V);
	
	/* average orbital velocity */
	V = ln_get_ell_orbit_vel (JD, &orbit);
	printf ("(Orbit Vel JD) for comet Enckle in kms  %f\n ", V);
	
	/* comet sun distance */
	dist = ln_get_ell_body_solar_dist (JD, &orbit);
	printf ("(Body Solar Dist) for comet Enckle in AU  %f\n ", dist);
	
	/* comet earth distance */
	dist = ln_get_ell_body_earth_dist (JD, &orbit);
	printf ("(Body Earth Dist) for comet Enckle in AU  %f\n ", dist);
	
	/* rise, set and transit */
	if (ln_get_ell_body_rst (JD, &observer, &orbit, &rst) == 1) 
		printf ("Comet is circumpolar\n");
	else {
		ln_get_local_date (rst.rise, &rise);
		ln_get_local_date (rst.transit, &transit);
		ln_get_local_date (rst.set, &set);
		print_date ("Rise", &rise);
		print_date ("Transit", &transit);
		print_date ("Set", &set);
	}
	
	return 0;
}