1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Copyright (C) 2003 Liam Girdwood <liam@gnova.org>
A simple example showing some comet calculations.
Comet Enckle
*/
#include <stdio.h>
#include <libnova/comet.h>
#include <libnova/julian_day.h>
#include <libnova/rise_set.h>
#include <libnova/transform.h>
#include <libnova/elliptic_motion.h>
void print_date (char * title, struct ln_zonedate* date)
{
printf ("\n%s\n",title);
printf (" Year : %d\n", date->years);
printf (" Month : %d\n", date->months);
printf (" Day : %d\n", date->days);
printf (" Hours : %d\n", date->hours);
printf (" Minutes : %d\n", date->minutes);
printf (" Seconds : %f\n", date->seconds);
printf("gmtoff %ld\n", date->gmtoff);
}
int main (int argc, char * argv[])
{
struct ln_equ_posn equ;
struct ln_rst_time rst;
struct ln_zonedate rise, set, transit;
struct ln_date epoch_date;
struct ln_lnlat_posn observer;
struct ln_ell_orbit orbit;
struct ln_rect_posn posn;
double JD, e_JD;
double E, v, V, r, l, dist;
/* observers location (Edinburgh), used to calc rst */
observer.lat = 55.92; /* 55.92 N */
observer.lng = -3.18; /* 3.18 W */
/* get Julian day from local time */
JD = ln_get_julian_from_sys();
printf ("JD %f\n", JD);
/* calc epoch JD */
epoch_date.years = 1990;
epoch_date.months = 10;
epoch_date.days = 28;
epoch_date.hours = 12;
epoch_date.minutes = 30;
epoch_date.seconds = 0;
e_JD = ln_get_julian_day (&epoch_date);
/* Enckle orbital elements */
orbit.JD = e_JD;
orbit.a = 2.2091404;
orbit.e = 0.8502196;
orbit.i = 11.94525;
orbit.omega = 334.75006;
orbit.w = 186.23352;
orbit.n = 0;
/* solve kepler for orbit */
E = ln_solve_kepler (0.1, 5.0);
printf("(Equation of kepler) E when e is 0.1 and M is 5.0 %f\n ", E);
/* true anomaly */
v = ln_get_ell_true_anomaly (0.1, E);
printf("(True Anomaly) v when e is 0.1 and E is 5.5545 %f\n ", v);
/* radius vector */
r = ln_get_ell_radius_vector (0.5, 0.1, E);
printf ("(Radius Vector) r when v is , e is 0.1 and E is 5.5545 %f\n ", r);
/* geocentric rect coords */
ln_get_ell_geo_rect_posn (&orbit, JD, &posn);
printf ("(Geocentric Rect Coords X) for comet Enckle %f\n", posn.X);
printf ("(Geocentric Rect Coords Y) for comet Enckle %f\n", posn.Y);
printf ("(Geocentric Rect Coords Z) for comet Enckle %f\n", posn.Z);
/* rectangular coords */
ln_get_ell_helio_rect_posn (&orbit, JD, &posn);
printf ("(Heliocentric Rect Coords X) for comet Enckle %f\n ", posn.X);
printf ("(Heliocentric Rect Coords Y) for comet Enckle %f\n ", posn.Y);
printf ("(Heliocentric Rect Coords Z) for comet Enckle %f\n ", posn.Z);
/* ra, dec */
ln_get_ell_body_equ_coords (JD, &orbit, &equ);
printf ("(RA) for comet Enckle %f\n ", equ.ra);
printf ("(Dec) for comet Enckle %f\n ", equ.dec);
/* orbit length */
l = ln_get_ell_orbit_len (&orbit);
printf ("(Orbit Length) for comet Enckle in AU %f\n ", l);
/* orbital velocity at perihelion */
V = ln_get_ell_orbit_pvel (&orbit);
printf ("(Orbit Perihelion Vel) for comet Enckle in kms %f\n ", V);
/* orbital velocity at aphelion */
V = ln_get_ell_orbit_avel (&orbit);
printf ("(Orbit Aphelion Vel) for comet Enckle in kms %f\n ", V);
/* average orbital velocity */
V = ln_get_ell_orbit_vel (JD, &orbit);
printf ("(Orbit Vel JD) for comet Enckle in kms %f\n ", V);
/* comet sun distance */
dist = ln_get_ell_body_solar_dist (JD, &orbit);
printf ("(Body Solar Dist) for comet Enckle in AU %f\n ", dist);
/* comet earth distance */
dist = ln_get_ell_body_earth_dist (JD, &orbit);
printf ("(Body Earth Dist) for comet Enckle in AU %f\n ", dist);
/* rise, set and transit */
if (ln_get_ell_body_rst (JD, &observer, &orbit, &rst) == 1)
printf ("Comet is circumpolar\n");
else {
ln_get_local_date (rst.rise, &rise);
ln_get_local_date (rst.transit, &transit);
ln_get_local_date (rst.set, &set);
print_date ("Rise", &rise);
print_date ("Transit", &transit);
print_date ("Set", &set);
}
return 0;
}
|