1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
/*
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Copyright (C) 2003 Liam Girdwood <lgirdwood@gmail.com>
A simple example showing some planetary calculations.
*/
#include <stdio.h>
#include <libnova/mars.h>
#include <libnova/julian_day.h>
#include <libnova/rise_set.h>
#include <libnova/transform.h>
#include <libnova/utility.h>
static void print_date(char *title, struct ln_zonedate *date)
{
fprintf(stdout, "\n%s\n",title);
fprintf(stdout, " Year : %d\n", date->years);
fprintf(stdout, " Month : %d\n", date->months);
fprintf(stdout, " Day : %d\n", date->days);
fprintf(stdout, " Hours : %d\n", date->hours);
fprintf(stdout, " Minutes : %d\n", date->minutes);
fprintf(stdout, " Seconds : %f\n", date->seconds);
}
int main(int argc, const char *argv[])
{
struct ln_helio_posn pos;
struct lnh_equ_posn hequ;
struct ln_equ_posn equ;
struct ln_rst_time rst;
struct ln_zonedate rise, set, transit;
struct ln_lnlat_posn observer;
double JD;
double au;
/* observers location (Edinburgh), used to calc rst */
observer.lat = 55.92; /* 55.92 N */
observer.lng = -3.18; /* 3.18 W */
/* get Julian day from local time */
JD = ln_get_julian_from_sys();
fprintf(stdout, "JD %f\n", JD);
/* longitude, latitude and radius vector */
ln_get_mars_helio_coords(JD, &pos);
fprintf(stdout, "Mars L %f B %f R %f\n", pos.L, pos.B, pos.R);
/* RA, DEC */
ln_get_mars_equ_coords(JD, &equ);
ln_equ_to_hequ(&equ, &hequ);
fprintf(stdout, "Mars RA %d:%d:%f Dec %d:%d:%f\n",
hequ.ra.hours, hequ.ra.minutes, hequ.ra.seconds,
hequ.dec.degrees, hequ.dec.minutes, hequ.dec.seconds);
/* Earth - Mars dist AU */
au = ln_get_mars_earth_dist(JD);
fprintf(stdout, "mars -> Earth dist (AU) %f\n",au);
/* Sun - Mars Dist AU */
au = ln_get_mars_solar_dist(JD);
fprintf(stdout, "mars -> Sun dist (AU) %f\n",au);
/* Mars disk, magnitude and phase */
au = ln_get_mars_disk(JD);
fprintf(stdout, "mars -> illuminated disk %f\n",au);
au = ln_get_mars_magnitude(JD);
fprintf(stdout, "mars -> magnitude %f\n",au);
au = ln_get_mars_phase(JD);
fprintf(stdout, "mars -> phase %f\n",au);
/* rise, set and transit time */
if (ln_get_mars_rst(JD, &observer, &rst) != 0)
fprintf(stdout, "Mars is circumpolar\n");
else {
ln_get_local_date(rst.rise, &rise);
ln_get_local_date(rst.transit, &transit);
ln_get_local_date(rst.set, &set);
print_date("Rise", &rise);
print_date("Transit", &transit);
print_date("Set", &set);
}
return 0;
}
|