File: mars.c

package info (click to toggle)
libnova 0.16-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,912 kB
  • sloc: ansic: 83,686; makefile: 156; sh: 51
file content (100 lines) | stat: -rw-r--r-- 3,116 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 

Copyright (C) 2003 Liam Girdwood <lgirdwood@gmail.com>


A simple example showing some planetary calculations.

*/

#include <stdio.h>
#include <libnova/mars.h>
#include <libnova/julian_day.h>
#include <libnova/rise_set.h>
#include <libnova/transform.h>
#include <libnova/utility.h>

static void print_date(char *title, struct ln_zonedate *date)
{
	fprintf(stdout, "\n%s\n",title);
	fprintf(stdout, " Year    : %d\n", date->years);
	fprintf(stdout, " Month   : %d\n", date->months);
	fprintf(stdout, " Day     : %d\n", date->days);
	fprintf(stdout, " Hours   : %d\n", date->hours);
	fprintf(stdout, " Minutes : %d\n", date->minutes);
	fprintf(stdout, " Seconds : %f\n", date->seconds);
}

int main(int argc, const char *argv[])
{
	struct ln_helio_posn pos;
	struct lnh_equ_posn hequ;
	struct ln_equ_posn equ;
	struct ln_rst_time rst;
	struct ln_zonedate rise, set, transit;
	struct ln_lnlat_posn observer;
	double JD;
	double au;
	
	/* observers location (Edinburgh), used to calc rst */
	observer.lat = 55.92; /* 55.92 N */
	observer.lng = -3.18; /* 3.18 W */
	
	/* get Julian day from local time */
	JD = ln_get_julian_from_sys();	
	fprintf(stdout, "JD %f\n", JD);
	
	/* longitude, latitude and radius vector */
	ln_get_mars_helio_coords(JD, &pos);	
	fprintf(stdout, "Mars L %f B %f R %f\n", pos.L, pos.B, pos.R);
	
	/* RA, DEC */
	ln_get_mars_equ_coords(JD, &equ);
	ln_equ_to_hequ(&equ, &hequ);
	fprintf(stdout, "Mars RA %d:%d:%f Dec %d:%d:%f\n",
		hequ.ra.hours, hequ.ra.minutes, hequ.ra.seconds,
		hequ.dec.degrees, hequ.dec.minutes, hequ.dec.seconds);
	
	/* Earth - Mars dist AU */
	au = ln_get_mars_earth_dist(JD);
	fprintf(stdout, "mars -> Earth dist (AU) %f\n",au);
	
	/* Sun - Mars Dist AU */
	au = ln_get_mars_solar_dist(JD);
	fprintf(stdout, "mars -> Sun dist (AU) %f\n",au);
	
	/* Mars disk, magnitude and phase */
	au = ln_get_mars_disk(JD);
	fprintf(stdout, "mars -> illuminated disk %f\n",au);
	au = ln_get_mars_magnitude(JD);
	fprintf(stdout, "mars -> magnitude %f\n",au);
	au = ln_get_mars_phase(JD);
	fprintf(stdout, "mars -> phase %f\n",au);
	
		/* rise, set and transit time */
	if (ln_get_mars_rst(JD, &observer, &rst) != 0)
		fprintf(stdout, "Mars is circumpolar\n");
	else {
		ln_get_local_date(rst.rise, &rise);
		ln_get_local_date(rst.transit, &transit);
		ln_get_local_date(rst.set, &set);
		print_date("Rise", &rise);
		print_date("Transit", &transit);
		print_date("Set", &set);
	}
	
	return 0;
}