File: test_ntru.c

package info (click to toggle)
libntru 0.5-3
  • links: PTS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 896 kB
  • sloc: ansic: 9,370; perl: 3,521; makefile: 22; sh: 10
file content (336 lines) | stat: -rw-r--r-- 16,064 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#include <string.h>
#ifdef WIN32
#include <Winsock2.h>
#else
#include <netinet/in.h>
#endif
#include "test_ntru.h"
#include "test_util.h"
#include "ntru.h"
#include "poly.h"

void encrypt_poly(NtruIntPoly *m, NtruTernPoly *r, NtruIntPoly *h, NtruIntPoly *e, uint16_t q) {
    ntru_mult_tern(h, r, e, q);
    ntru_add(e, m);
    ntru_mod_mask(e, q-1);
}

void decrypt_poly(NtruIntPoly *e, NtruEncPrivKey *priv, NtruIntPoly *d, uint16_t modulus) {
#ifndef NTRU_AVOID_HAMMING_WT_PATENT
    if (priv->t.prod_flag)
        ntru_mult_prod(e, &priv->t.poly.prod, d, modulus-1);
    else
#endif   /* NTRU_AVOID_HAMMING_WT_PATENT */
        ntru_mult_tern(e, &priv->t.poly.tern, d, modulus-1);
    ntru_mod_mask(d, modulus-1);
    ntru_mult_fac(d, 3);
    ntru_add(d, e);
    ntru_mod_center(d, modulus);
    ntru_mod3(d);
    uint16_t i;
    for (i=0; i<d->N; i++)
        if (d->coeffs[i] == 2)
            d->coeffs[i] = -1;
}

/** Returns 0 on error, 1 on success */
uint8_t gen_key_pair(char *seed, NtruEncParams *params, NtruEncKeyPair *kp) {
    uint16_t seed_len = strlen(seed);
    uint8_t seed_uint8[seed_len];
    str_to_uint8(seed, seed_uint8);
    NtruRandContext rand_ctx;
    NtruRandGen rng = NTRU_RNG_CTR_DRBG;
    ntru_rand_init_det(&rand_ctx, &rng, seed_uint8, seed_len);
    uint8_t result = 1;
    result &= ntru_gen_key_pair(params, kp, &rand_ctx) == NTRU_SUCCESS;
    result &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
    return result;
}

uint8_t test_keygen() {
    NtruEncParams param_arr[] = ALL_PARAM_SETS;
    uint8_t valid = 1;

    uint8_t i;
    NtruRandGen rng = NTRU_RNG_DEFAULT;
    for (i=0; i<sizeof(param_arr)/sizeof(param_arr[0]); i++) {
        NtruEncParams params = param_arr[i];
        NtruEncKeyPair kp;
        NtruRandContext rand_ctx;
        ntru_rand_init(&rand_ctx, &rng);
        valid &= ntru_gen_key_pair(&params, &kp, &rand_ctx) == NTRU_SUCCESS;

        /* encrypt a random message */
        NtruTernPoly m;
        ntru_rand_tern(params.N, params.N/3, params.N/3, &m, &rand_ctx);
        NtruIntPoly m_int;
        ntru_tern_to_int(&m, &m_int);

        NtruTernPoly r;
        ntru_rand_tern(params.N, params.N/3, params.N/3, &r, &rand_ctx);
        valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
        NtruIntPoly e;
        encrypt_poly(&m_int, &r, &kp.pub.h, &e, params.q);

        /* decrypt and verify */
        NtruIntPoly c;
        decrypt_poly(&e, &kp.priv, &c, params.q);
        valid &= ntru_equals_int(&m_int, &c);

        /* test deterministic key generation */
        valid &= gen_key_pair("my test password", &params, &kp);
        char seed2_char[19];
        strcpy(seed2_char, "my test password");
        uint8_t seed2[strlen(seed2_char)];
        str_to_uint8(seed2_char, seed2);
        NtruEncKeyPair kp2;
        NtruRandGen rng = NTRU_RNG_CTR_DRBG;
        NtruRandContext rand_ctx2;
        ntru_rand_init_det(&rand_ctx2, &rng, seed2, strlen(seed2_char));
        valid &= ntru_gen_key_pair(&params, &kp2, &rand_ctx2) == NTRU_SUCCESS;
        valid &= ntru_rand_release(&rand_ctx2) == NTRU_SUCCESS;
        valid &= equals_key_pair(&kp, &kp2);
    }

    print_result("test_keygen", valid);
    return valid;
}

/* tests ntru_encrypt() with a non-deterministic RNG */
uint8_t test_encr_decr_nondet(NtruEncParams *params) {
    NtruRandGen rng = NTRU_RNG_DEFAULT;
    NtruRandContext rand_ctx;
    uint8_t valid = ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;

    /* create a regular key pair (one private, one public) */
    NtruEncKeyPair kp;
    valid &= ntru_gen_key_pair(params, &kp, &rand_ctx) == NTRU_SUCCESS;

    /* randomly choose the number of public keys for testing ntru_gen_key_pair_multi and ntru_gen_pub */
    uint32_t num_pub_keys;
    valid &= ntru_rand_generate((uint8_t*)&num_pub_keys, sizeof(num_pub_keys), &rand_ctx) == NTRU_SUCCESS;
    num_pub_keys %= 10;
    num_pub_keys++;   /* 1 <= num_pub_keys <= 10 */

    /* create a key pair with multiple public keys (using ntru_gen_key_pair_multi) */
    NtruEncPrivKey priv_multi1;
    NtruEncPubKey pub_multi1[num_pub_keys];
    valid &= ntru_gen_key_pair_multi(params, &priv_multi1, pub_multi1, &rand_ctx, num_pub_keys) == NTRU_SUCCESS;
    /* create a key pair with multiple public keys (using ntru_gen_pub) */
    NtruEncKeyPair kp_multi2;
    NtruEncPubKey pub_multi2[num_pub_keys-1];
    valid &= ntru_gen_key_pair(params, &kp_multi2, &rand_ctx) == NTRU_SUCCESS;
    uint16_t i;
    for (i=0; i<num_pub_keys-1; i++)
      valid &= ntru_gen_pub(params, &kp_multi2.priv, &pub_multi2[i], &rand_ctx) == NTRU_SUCCESS;

    uint16_t max_len = ntru_max_msg_len(params);
    uint8_t plain[max_len];
    valid &= ntru_rand_generate(plain, max_len, &rand_ctx) == NTRU_SUCCESS;
    uint16_t enc_len = ntru_enc_len(params);
    uint8_t encrypted[enc_len];
    uint8_t decrypted[max_len];
    uint16_t plain_len;
    for (plain_len=0; plain_len<=max_len; plain_len++) {
        /* test single public key */
        valid &= ntru_encrypt((uint8_t*)&plain, plain_len, &kp.pub, params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
        uint16_t dec_len;
        valid &= ntru_decrypt((uint8_t*)&encrypted, &kp, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
        valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);

        /* test multiple public keys */
        uint8_t i;
        for (i=0; i<num_pub_keys; i++) {
            uint8_t rand_value;
            valid &= ntru_rand_generate(&rand_value, 1, &rand_ctx) == NTRU_SUCCESS;
            if (rand_value%100 != 0)   /* only test 1 out of 100 */
                continue;

            /* test priv_multi1/pub_multi1  */
            valid &= ntru_encrypt((uint8_t*)&plain, plain_len, &pub_multi1[i], params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
            NtruEncKeyPair kp_decrypt1 = {priv_multi1, pub_multi1[i]};
            uint16_t dec_len;
            valid &= ntru_decrypt((uint8_t*)&encrypted, &kp_decrypt1, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
            valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);

            /* test kp_multi2 + pub_multi2 */
            NtruEncPubKey *pub = i==0 ? &kp_multi2.pub : &pub_multi2[i-1];
            valid &= ntru_encrypt((uint8_t*)&plain, plain_len, pub, params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
            NtruEncKeyPair kp_decrypt2 = {kp_multi2.priv, *pub};
            valid &= ntru_decrypt((uint8_t*)&encrypted, &kp_decrypt2, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
            valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);
        }
    }

    valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
    return valid;
}

/* tests ntru_encrypt() with a deterministic RNG */
uint8_t test_encr_decr_det(NtruEncParams *params, uint8_t *digest_expected) {
    NtruEncKeyPair kp;
    uint8_t valid = gen_key_pair("seed value for key generation", params, &kp);
    uint8_t pub_arr[ntru_pub_len(params)];
    ntru_export_pub(&kp.pub, pub_arr);
    NtruEncPubKey pub2;
    ntru_import_pub(pub_arr, &pub2);
    valid &= ntru_equals_int(&kp.pub.h, &pub2.h);

    NtruRandContext rand_ctx_plaintext;
    uint16_t max_len = ntru_max_msg_len(params);
    uint8_t plain[max_len];
    NtruRandGen rng_plaintext = NTRU_RNG_CTR_DRBG;
    char plain_seed_char[25];
    strcpy(plain_seed_char, "seed value for plaintext");
    uint8_t plain_seed[25];
    str_to_uint8(plain_seed_char, plain_seed);
    valid &= ntru_rand_init_det(&rand_ctx_plaintext, &rng_plaintext, plain_seed, strlen(plain_seed_char)) == NTRU_SUCCESS;
    valid &= ntru_rand_generate(plain, max_len, &rand_ctx_plaintext) == NTRU_SUCCESS;
    valid &= ntru_rand_release(&rand_ctx_plaintext) == NTRU_SUCCESS;
    uint8_t plain2[max_len];
    memcpy(plain2, plain, max_len);
    uint16_t enc_len = ntru_enc_len(params);
    uint8_t encrypted[enc_len];
    uint8_t encrypted2[enc_len];

    char seed_char[11];
    strcpy(seed_char, "seed value");
    uint8_t seed[11];
    str_to_uint8(seed_char, seed);
    char seed2_char[11];
    strcpy(seed2_char, "seed value");
    uint8_t seed2[11];
    str_to_uint8(seed2_char, seed2);

    NtruRandContext rand_ctx;
    NtruRandGen rng = NTRU_RNG_CTR_DRBG;
    valid &= ntru_rand_init_det(&rand_ctx, &rng, seed, strlen(seed_char)) == NTRU_SUCCESS;
    NtruRandContext rand_ctx2;
    NtruRandGen rng2 = NTRU_RNG_CTR_DRBG;
    valid &= ntru_rand_init_det(&rand_ctx2, &rng2, seed2, strlen(seed2_char)) == NTRU_SUCCESS;

    uint8_t decrypted[max_len];
    uint16_t plain_len;
    uint16_t dec_len;
    for (plain_len=0; plain_len<=max_len; plain_len++) {
        valid &= ntru_encrypt((uint8_t*)&plain, plain_len, &kp.pub, params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
        valid &= ntru_encrypt((uint8_t*)&plain2, plain_len, &pub2, params, &rand_ctx2, (uint8_t*)&encrypted2) == NTRU_SUCCESS;
        valid &= memcmp(encrypted, encrypted2, enc_len) == 0;

        valid &= ntru_decrypt((uint8_t*)&encrypted, &kp, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
        valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);
    }

    uint8_t digest[20];
    ntru_sha1(encrypted, enc_len, digest);
    valid &= memcmp(digest, digest_expected, 20) == 0;

    valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
    valid &= ntru_rand_release(&rand_ctx2) == NTRU_SUCCESS;

    return valid;
}

uint8_t test_encr_decr() {
    NtruEncParams param_arr[] = ALL_PARAM_SETS;
    uint8_t valid = 1;
    uint8_t i;

    /*
     * SHA-1 digests of deterministic ciphertexts,
     * one set for big-endian environments and one for little-endian ones.
     * If/when the CTR_DRBG implementation is made endian independent,
     * only one set of digests will be needed here.
     */
    uint8_t digests_expected_little_endian[][20] = {
        {0xdf, 0xad, 0xcd, 0x25, 0x01, 0x9f, 0x3d, 0xb1, 0x06, 0x5f,   /* EES401EP1 */
         0x15, 0xbe, 0x8f, 0x69, 0xfd, 0x23, 0x88, 0x88, 0x2a, 0xc8},
        {0xc3, 0x8b, 0x8d, 0xdc, 0xfd, 0xef, 0xf8, 0x1b, 0xa6, 0x57,   /* EES449EP1 */
         0xeb, 0x66, 0x49, 0xe8, 0xe9, 0x4d, 0x70, 0xab, 0xce, 0x02},
        {0xfd, 0xa8, 0xb1, 0xdb, 0x96, 0xc4, 0x3a, 0xeb, 0x0c, 0x07,   /* EES677EP1 */
         0xef, 0xf7, 0xc0, 0xf4, 0x73, 0x59, 0x6e, 0xd9, 0x97, 0xb7},
        {0xe7, 0x53, 0xd6, 0x89, 0xc6, 0x06, 0x3d, 0xf1, 0x12, 0xf1,   /* EES1087EP2 */
         0xeb, 0x8b, 0xd8, 0x7c, 0x26, 0x67, 0xc9, 0xe5, 0x4a, 0x0e},
        {0x7a, 0x5d, 0x41, 0x88, 0x70, 0xef, 0x4f, 0xf3, 0xdf, 0xb9,   /* EES541EP1 */
         0xa8, 0x76, 0x00, 0x00, 0x6d, 0x65, 0x61, 0xe0, 0xce, 0x44},
        {0x69, 0x7b, 0x0a, 0x4f, 0xd6, 0x41, 0x04, 0x3f, 0x91, 0xe9,   /* EES613EP1 */
         0xb0, 0xa9, 0x42, 0xfe, 0x66, 0x4e, 0xcc, 0x4e, 0xbb, 0xd7},
        {0xac, 0x3a, 0x51, 0xd6, 0xaf, 0x6c, 0x38, 0xa8, 0x67, 0xde,   /* EES887EP1 */
         0xc8, 0xfe, 0xf7, 0xaf, 0x4a, 0x28, 0x6e, 0x30, 0xad, 0x98},
        {0x5f, 0x34, 0x5f, 0xf7, 0x32, 0x13, 0x06, 0x55, 0x6b, 0xb7,   /* EES1171EP1 */
         0x02, 0x7d, 0xb3, 0x16, 0xef, 0x84, 0x09, 0xe9, 0xa0, 0xff},
        {0x2e, 0x35, 0xd4, 0xa6, 0x99, 0xb8, 0x5e, 0x06, 0x47, 0x61,   /* EES659EP1 */
         0x68, 0x20, 0x26, 0xb0, 0x17, 0xa9, 0xc6, 0x37, 0xb7, 0x8e},
        {0x15, 0xde, 0x51, 0xbb, 0xc0, 0xe0, 0x39, 0xf2, 0xb6, 0x0e,   /* EES761EP1 */
         0x98, 0xa7, 0xae, 0x10, 0xbf, 0xfd, 0x02, 0xcc, 0x76, 0x43},
        {0x29, 0xac, 0x2d, 0x21, 0x29, 0x79, 0x98, 0x89, 0x1c, 0xa0,   /* EES1087EP1 */
         0x6c, 0xed, 0x7d, 0x68, 0x29, 0x9b, 0xb4, 0x9f, 0xe4, 0xd0},
        {0x2f, 0xf9, 0x32, 0x25, 0xbc, 0xd5, 0xad, 0xc4, 0x4b, 0x19,   /* EES1499EP1 */
         0xca, 0xe6, 0x52, 0x89, 0x2e, 0x29, 0x38, 0x5a, 0x61, 0xd7},
        {0xaf, 0x39, 0x02, 0xd5, 0xaa, 0xab, 0x29, 0xaa, 0x01, 0x99,   /* EES401EP2 */
         0xd1, 0xf4, 0x0f, 0x02, 0x35, 0x58, 0x71, 0x58, 0xdb, 0xdb},
        {0xa3, 0xd6, 0x5f, 0x7d, 0x5d, 0x66, 0x49, 0x1e, 0x15, 0xbc,   /* EES439EP1 */
         0xba, 0xf0, 0xfa, 0x07, 0x9d, 0xd3, 0x33, 0xf5, 0x9f, 0x37},
        {0xac, 0xea, 0xa3, 0xc8, 0x05, 0x8b, 0x23, 0x68, 0xaa, 0x9a,   /* EES443EP1 */
         0x3c, 0x9b, 0xdb, 0x7f, 0xbe, 0x7b, 0x49, 0x03, 0x94, 0xc8},
        {0x49, 0xfb, 0x90, 0x33, 0xaf, 0x12, 0xc7, 0x29, 0x17, 0x47,   /* EES593EP1 */
         0xf2, 0x09, 0xb9, 0xc3, 0x5d, 0xf4, 0x21, 0x5a, 0xbf, 0x98},
        {0x69, 0xa8, 0x36, 0x3d, 0xe1, 0xec, 0x9e, 0x89, 0xa1, 0x0a,   /* EES587EP1 */
         0xa5, 0xb7, 0x35, 0xbe, 0x5b, 0x75, 0xb6, 0xd8, 0xe1, 0x9a},
        {0x93, 0xfe, 0x81, 0xd5, 0x79, 0x2e, 0x34, 0xd8, 0xe3, 0x1f,   /* EES743EP1 */
         0xe5, 0x03, 0xb9, 0x06, 0xdc, 0x4f, 0x28, 0xb9, 0xaf, 0x37}
    };
    uint8_t digests_expected_big_endian[][20] = {
        {0xba, 0xeb, 0xb3, 0x0a, 0x1c, 0xcb, 0x90, 0x46, 0x50, 0x52,   /* EES401EP1 */
         0x20, 0x9d, 0xeb, 0x90, 0x21, 0xbc, 0xe9, 0x19, 0xcf, 0x25},
        {0x92, 0x38, 0x0d, 0xa0, 0x6b, 0xef, 0x0c, 0x98, 0x99, 0x13,   /* EES449EP1 */
         0x3a, 0xb7, 0xba, 0x84, 0xdc, 0xce, 0xea, 0xc4, 0x1e, 0x91},
        {0xaf, 0x10, 0xe4, 0x52, 0x51, 0xfb, 0x89, 0xf6, 0x1b, 0xae,   /* EES677EP1 */
         0xe0, 0x93, 0x72, 0x99, 0x4f, 0x4d, 0xc8, 0xb2, 0x15, 0xbe},
        {0x65, 0x38, 0xbf, 0x44, 0xa1, 0xdc, 0xf8, 0x46, 0x25, 0x19,   /* EES1087EP2 */
         0x1f, 0xe5, 0x99, 0x67, 0x0d, 0x08, 0x3c, 0x63, 0x41, 0x59},
        {0x06, 0x76, 0xd2, 0xa3, 0xed, 0xea, 0x00, 0x1f, 0x17, 0xfd,   /* EES541EP1 */
         0x6e, 0x7e, 0x05, 0xf3, 0xef, 0x30, 0x4e, 0x44, 0x42, 0x5a},
        {0x7b, 0x76, 0x8c, 0xf5, 0x97, 0xea, 0x07, 0x4e, 0xea, 0x91,   /* EES613EP1 */
         0xeb, 0xa4, 0xf1, 0x0e, 0xec, 0x30, 0x7a, 0x7e, 0xae, 0x32},
        {0x44, 0xa0, 0x03, 0x19, 0x44, 0x6b, 0x61, 0x5c, 0x97, 0xc0,   /* EES887EP1 */
         0x19, 0xec, 0xf6, 0x5e, 0x13, 0x28, 0x11, 0xda, 0xc2, 0xcc},
        {0x2f, 0x7e, 0xd4, 0x20, 0xe5, 0x84, 0x03, 0xfa, 0xa3, 0xbd,   /* EES1171EP1 */
         0xd0, 0x64, 0xb7, 0xbe, 0x36, 0x9d, 0xc8, 0x9d, 0x05, 0x0f},
        {0x2c, 0x52, 0x35, 0x93, 0x11, 0xbf, 0x88, 0x5d, 0xc8, 0xce,   /* EES659EP1 */
         0xe8, 0x7a, 0x3c, 0xb8, 0x23, 0x08, 0x73, 0xbf, 0xb2, 0xcb},
        {0xe0, 0x48, 0xa2, 0xcc, 0x52, 0x78, 0x53, 0x54, 0xf4, 0xfd,   /* EES761EP1 */
         0x0e, 0xb9, 0x23, 0x97, 0x7f, 0x9c, 0xa8, 0x13, 0x32, 0xe1},
        {0x33, 0x95, 0x90, 0x70, 0xee, 0x95, 0x7e, 0xcf, 0x1d, 0xc7,   /* EES1087EP1 */
         0x6e, 0x33, 0xa7, 0xf6, 0x07, 0xff, 0x92, 0xa2, 0x9d, 0xdc},
        {0x2f, 0x5e, 0x7c, 0x7b, 0xb7, 0x23, 0x13, 0x4d, 0x9e, 0xb5,   /* EES1499EP1 */
         0x82, 0x52, 0xd6, 0x57, 0xee, 0xc7, 0x44, 0x31, 0x4c, 0x8e},
        {0x00, 0xb5, 0xbe, 0x7e, 0xa3, 0x9b, 0xd4, 0xf8, 0x12, 0xf5,   /* EES401EP2 */
         0xa6, 0x7d, 0x44, 0xa4, 0x89, 0xf4, 0xbf, 0xb7, 0x91, 0x43},
        {0x77, 0x70, 0xef, 0x2c, 0x70, 0x8b, 0x40, 0xf5, 0x15, 0xba,   /* EES439EP1 */
         0xf4, 0x03, 0xef, 0xaa, 0x18, 0xbe, 0x04, 0x11, 0xd4, 0x59},
        {0x46, 0x96, 0xa9, 0x58, 0xae, 0xe6, 0x14, 0x75, 0x0c, 0x22,   /* EES443EP1 */
         0x78, 0x02, 0x5f, 0xe4, 0x6b, 0x94, 0xd4, 0x33, 0x75, 0x64},
        {0xf3, 0x1c, 0x73, 0x9b, 0x84, 0x8b, 0xda, 0x76, 0xb6, 0xcc,   /* EES593EP1 */
         0xf1, 0xf9, 0x4b, 0xc4, 0x85, 0x5f, 0xec, 0xf7, 0x86, 0x4a},
        {0xb1, 0xa3, 0x11, 0xdc, 0x48, 0x40, 0xc1, 0x9f, 0x3e, 0x56,   /* EES587EP1 */
         0x60, 0x8e, 0xcf, 0xd5, 0x76, 0xa7, 0x7c, 0x78, 0x84, 0x39},
        {0x35, 0xe1, 0x67, 0x89, 0x9d, 0x44, 0x26, 0x91, 0xaf, 0xc3,   /* EES743EP1 */
         0x69, 0x41, 0x82, 0xeb, 0x3b, 0x8c, 0xc4, 0xfd, 0xe5, 0x08}
    };
    uint8_t big_endian = htons(1) == 1;

    for (i=0; i<sizeof(param_arr)/sizeof(param_arr[0]); i++) {
        valid &= test_encr_decr_nondet(&param_arr[i]);
        valid &= test_encr_decr_det(&param_arr[i], big_endian?digests_expected_big_endian[i]:digests_expected_little_endian[i]);
    }

    print_result("test_encr_decr", valid);
    return valid;
}

uint8_t test_ntru() {
    uint8_t valid = test_keygen();
    valid &= test_encr_decr();
    return valid;
}