1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
#include <string.h>
#ifdef WIN32
#include <Winsock2.h>
#else
#include <netinet/in.h>
#endif
#include "test_ntru.h"
#include "test_util.h"
#include "ntru.h"
#include "poly.h"
void encrypt_poly(NtruIntPoly *m, NtruTernPoly *r, NtruIntPoly *h, NtruIntPoly *e, uint16_t q) {
ntru_mult_tern(h, r, e, q);
ntru_add(e, m);
ntru_mod_mask(e, q-1);
}
void decrypt_poly(NtruIntPoly *e, NtruEncPrivKey *priv, NtruIntPoly *d, uint16_t modulus) {
#ifndef NTRU_AVOID_HAMMING_WT_PATENT
if (priv->t.prod_flag)
ntru_mult_prod(e, &priv->t.poly.prod, d, modulus-1);
else
#endif /* NTRU_AVOID_HAMMING_WT_PATENT */
ntru_mult_tern(e, &priv->t.poly.tern, d, modulus-1);
ntru_mod_mask(d, modulus-1);
ntru_mult_fac(d, 3);
ntru_add(d, e);
ntru_mod_center(d, modulus);
ntru_mod3(d);
uint16_t i;
for (i=0; i<d->N; i++)
if (d->coeffs[i] == 2)
d->coeffs[i] = -1;
}
/** Returns 0 on error, 1 on success */
uint8_t gen_key_pair(char *seed, NtruEncParams *params, NtruEncKeyPair *kp) {
uint16_t seed_len = strlen(seed);
uint8_t seed_uint8[seed_len];
str_to_uint8(seed, seed_uint8);
NtruRandContext rand_ctx;
NtruRandGen rng = NTRU_RNG_CTR_DRBG;
ntru_rand_init_det(&rand_ctx, &rng, seed_uint8, seed_len);
uint8_t result = 1;
result &= ntru_gen_key_pair(params, kp, &rand_ctx) == NTRU_SUCCESS;
result &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
return result;
}
uint8_t test_keygen() {
NtruEncParams param_arr[] = ALL_PARAM_SETS;
uint8_t valid = 1;
uint8_t i;
NtruRandGen rng = NTRU_RNG_DEFAULT;
for (i=0; i<sizeof(param_arr)/sizeof(param_arr[0]); i++) {
NtruEncParams params = param_arr[i];
NtruEncKeyPair kp;
NtruRandContext rand_ctx;
ntru_rand_init(&rand_ctx, &rng);
valid &= ntru_gen_key_pair(¶ms, &kp, &rand_ctx) == NTRU_SUCCESS;
/* encrypt a random message */
NtruTernPoly m;
ntru_rand_tern(params.N, params.N/3, params.N/3, &m, &rand_ctx);
NtruIntPoly m_int;
ntru_tern_to_int(&m, &m_int);
NtruTernPoly r;
ntru_rand_tern(params.N, params.N/3, params.N/3, &r, &rand_ctx);
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
NtruIntPoly e;
encrypt_poly(&m_int, &r, &kp.pub.h, &e, params.q);
/* decrypt and verify */
NtruIntPoly c;
decrypt_poly(&e, &kp.priv, &c, params.q);
valid &= ntru_equals_int(&m_int, &c);
/* test deterministic key generation */
valid &= gen_key_pair("my test password", ¶ms, &kp);
char seed2_char[19];
strcpy(seed2_char, "my test password");
uint8_t seed2[strlen(seed2_char)];
str_to_uint8(seed2_char, seed2);
NtruEncKeyPair kp2;
NtruRandGen rng = NTRU_RNG_CTR_DRBG;
NtruRandContext rand_ctx2;
ntru_rand_init_det(&rand_ctx2, &rng, seed2, strlen(seed2_char));
valid &= ntru_gen_key_pair(¶ms, &kp2, &rand_ctx2) == NTRU_SUCCESS;
valid &= ntru_rand_release(&rand_ctx2) == NTRU_SUCCESS;
valid &= equals_key_pair(&kp, &kp2);
}
print_result("test_keygen", valid);
return valid;
}
/* tests ntru_encrypt() with a non-deterministic RNG */
uint8_t test_encr_decr_nondet(NtruEncParams *params) {
NtruRandGen rng = NTRU_RNG_DEFAULT;
NtruRandContext rand_ctx;
uint8_t valid = ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
/* create a regular key pair (one private, one public) */
NtruEncKeyPair kp;
valid &= ntru_gen_key_pair(params, &kp, &rand_ctx) == NTRU_SUCCESS;
/* randomly choose the number of public keys for testing ntru_gen_key_pair_multi and ntru_gen_pub */
uint32_t num_pub_keys;
valid &= ntru_rand_generate((uint8_t*)&num_pub_keys, sizeof(num_pub_keys), &rand_ctx) == NTRU_SUCCESS;
num_pub_keys %= 10;
num_pub_keys++; /* 1 <= num_pub_keys <= 10 */
/* create a key pair with multiple public keys (using ntru_gen_key_pair_multi) */
NtruEncPrivKey priv_multi1;
NtruEncPubKey pub_multi1[num_pub_keys];
valid &= ntru_gen_key_pair_multi(params, &priv_multi1, pub_multi1, &rand_ctx, num_pub_keys) == NTRU_SUCCESS;
/* create a key pair with multiple public keys (using ntru_gen_pub) */
NtruEncKeyPair kp_multi2;
NtruEncPubKey pub_multi2[num_pub_keys-1];
valid &= ntru_gen_key_pair(params, &kp_multi2, &rand_ctx) == NTRU_SUCCESS;
uint16_t i;
for (i=0; i<num_pub_keys-1; i++)
valid &= ntru_gen_pub(params, &kp_multi2.priv, &pub_multi2[i], &rand_ctx) == NTRU_SUCCESS;
uint16_t max_len = ntru_max_msg_len(params);
uint8_t plain[max_len];
valid &= ntru_rand_generate(plain, max_len, &rand_ctx) == NTRU_SUCCESS;
uint16_t enc_len = ntru_enc_len(params);
uint8_t encrypted[enc_len];
uint8_t decrypted[max_len];
uint16_t plain_len;
for (plain_len=0; plain_len<=max_len; plain_len++) {
/* test single public key */
valid &= ntru_encrypt((uint8_t*)&plain, plain_len, &kp.pub, params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
uint16_t dec_len;
valid &= ntru_decrypt((uint8_t*)&encrypted, &kp, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);
/* test multiple public keys */
uint8_t i;
for (i=0; i<num_pub_keys; i++) {
uint8_t rand_value;
valid &= ntru_rand_generate(&rand_value, 1, &rand_ctx) == NTRU_SUCCESS;
if (rand_value%100 != 0) /* only test 1 out of 100 */
continue;
/* test priv_multi1/pub_multi1 */
valid &= ntru_encrypt((uint8_t*)&plain, plain_len, &pub_multi1[i], params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
NtruEncKeyPair kp_decrypt1 = {priv_multi1, pub_multi1[i]};
uint16_t dec_len;
valid &= ntru_decrypt((uint8_t*)&encrypted, &kp_decrypt1, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);
/* test kp_multi2 + pub_multi2 */
NtruEncPubKey *pub = i==0 ? &kp_multi2.pub : &pub_multi2[i-1];
valid &= ntru_encrypt((uint8_t*)&plain, plain_len, pub, params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
NtruEncKeyPair kp_decrypt2 = {kp_multi2.priv, *pub};
valid &= ntru_decrypt((uint8_t*)&encrypted, &kp_decrypt2, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);
}
}
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
return valid;
}
/* tests ntru_encrypt() with a deterministic RNG */
uint8_t test_encr_decr_det(NtruEncParams *params, uint8_t *digest_expected) {
NtruEncKeyPair kp;
uint8_t valid = gen_key_pair("seed value for key generation", params, &kp);
uint8_t pub_arr[ntru_pub_len(params)];
ntru_export_pub(&kp.pub, pub_arr);
NtruEncPubKey pub2;
ntru_import_pub(pub_arr, &pub2);
valid &= ntru_equals_int(&kp.pub.h, &pub2.h);
NtruRandContext rand_ctx_plaintext;
uint16_t max_len = ntru_max_msg_len(params);
uint8_t plain[max_len];
NtruRandGen rng_plaintext = NTRU_RNG_CTR_DRBG;
char plain_seed_char[25];
strcpy(plain_seed_char, "seed value for plaintext");
uint8_t plain_seed[25];
str_to_uint8(plain_seed_char, plain_seed);
valid &= ntru_rand_init_det(&rand_ctx_plaintext, &rng_plaintext, plain_seed, strlen(plain_seed_char)) == NTRU_SUCCESS;
valid &= ntru_rand_generate(plain, max_len, &rand_ctx_plaintext) == NTRU_SUCCESS;
valid &= ntru_rand_release(&rand_ctx_plaintext) == NTRU_SUCCESS;
uint8_t plain2[max_len];
memcpy(plain2, plain, max_len);
uint16_t enc_len = ntru_enc_len(params);
uint8_t encrypted[enc_len];
uint8_t encrypted2[enc_len];
char seed_char[11];
strcpy(seed_char, "seed value");
uint8_t seed[11];
str_to_uint8(seed_char, seed);
char seed2_char[11];
strcpy(seed2_char, "seed value");
uint8_t seed2[11];
str_to_uint8(seed2_char, seed2);
NtruRandContext rand_ctx;
NtruRandGen rng = NTRU_RNG_CTR_DRBG;
valid &= ntru_rand_init_det(&rand_ctx, &rng, seed, strlen(seed_char)) == NTRU_SUCCESS;
NtruRandContext rand_ctx2;
NtruRandGen rng2 = NTRU_RNG_CTR_DRBG;
valid &= ntru_rand_init_det(&rand_ctx2, &rng2, seed2, strlen(seed2_char)) == NTRU_SUCCESS;
uint8_t decrypted[max_len];
uint16_t plain_len;
uint16_t dec_len;
for (plain_len=0; plain_len<=max_len; plain_len++) {
valid &= ntru_encrypt((uint8_t*)&plain, plain_len, &kp.pub, params, &rand_ctx, (uint8_t*)&encrypted) == NTRU_SUCCESS;
valid &= ntru_encrypt((uint8_t*)&plain2, plain_len, &pub2, params, &rand_ctx2, (uint8_t*)&encrypted2) == NTRU_SUCCESS;
valid &= memcmp(encrypted, encrypted2, enc_len) == 0;
valid &= ntru_decrypt((uint8_t*)&encrypted, &kp, params, (uint8_t*)&decrypted, &dec_len) == NTRU_SUCCESS;
valid &= equals_arr((uint8_t*)&plain, (uint8_t*)&decrypted, plain_len);
}
uint8_t digest[20];
ntru_sha1(encrypted, enc_len, digest);
valid &= memcmp(digest, digest_expected, 20) == 0;
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
valid &= ntru_rand_release(&rand_ctx2) == NTRU_SUCCESS;
return valid;
}
uint8_t test_encr_decr() {
NtruEncParams param_arr[] = ALL_PARAM_SETS;
uint8_t valid = 1;
uint8_t i;
/*
* SHA-1 digests of deterministic ciphertexts,
* one set for big-endian environments and one for little-endian ones.
* If/when the CTR_DRBG implementation is made endian independent,
* only one set of digests will be needed here.
*/
uint8_t digests_expected_little_endian[][20] = {
{0xdf, 0xad, 0xcd, 0x25, 0x01, 0x9f, 0x3d, 0xb1, 0x06, 0x5f, /* EES401EP1 */
0x15, 0xbe, 0x8f, 0x69, 0xfd, 0x23, 0x88, 0x88, 0x2a, 0xc8},
{0xc3, 0x8b, 0x8d, 0xdc, 0xfd, 0xef, 0xf8, 0x1b, 0xa6, 0x57, /* EES449EP1 */
0xeb, 0x66, 0x49, 0xe8, 0xe9, 0x4d, 0x70, 0xab, 0xce, 0x02},
{0xfd, 0xa8, 0xb1, 0xdb, 0x96, 0xc4, 0x3a, 0xeb, 0x0c, 0x07, /* EES677EP1 */
0xef, 0xf7, 0xc0, 0xf4, 0x73, 0x59, 0x6e, 0xd9, 0x97, 0xb7},
{0xe7, 0x53, 0xd6, 0x89, 0xc6, 0x06, 0x3d, 0xf1, 0x12, 0xf1, /* EES1087EP2 */
0xeb, 0x8b, 0xd8, 0x7c, 0x26, 0x67, 0xc9, 0xe5, 0x4a, 0x0e},
{0x7a, 0x5d, 0x41, 0x88, 0x70, 0xef, 0x4f, 0xf3, 0xdf, 0xb9, /* EES541EP1 */
0xa8, 0x76, 0x00, 0x00, 0x6d, 0x65, 0x61, 0xe0, 0xce, 0x44},
{0x69, 0x7b, 0x0a, 0x4f, 0xd6, 0x41, 0x04, 0x3f, 0x91, 0xe9, /* EES613EP1 */
0xb0, 0xa9, 0x42, 0xfe, 0x66, 0x4e, 0xcc, 0x4e, 0xbb, 0xd7},
{0xac, 0x3a, 0x51, 0xd6, 0xaf, 0x6c, 0x38, 0xa8, 0x67, 0xde, /* EES887EP1 */
0xc8, 0xfe, 0xf7, 0xaf, 0x4a, 0x28, 0x6e, 0x30, 0xad, 0x98},
{0x5f, 0x34, 0x5f, 0xf7, 0x32, 0x13, 0x06, 0x55, 0x6b, 0xb7, /* EES1171EP1 */
0x02, 0x7d, 0xb3, 0x16, 0xef, 0x84, 0x09, 0xe9, 0xa0, 0xff},
{0x2e, 0x35, 0xd4, 0xa6, 0x99, 0xb8, 0x5e, 0x06, 0x47, 0x61, /* EES659EP1 */
0x68, 0x20, 0x26, 0xb0, 0x17, 0xa9, 0xc6, 0x37, 0xb7, 0x8e},
{0x15, 0xde, 0x51, 0xbb, 0xc0, 0xe0, 0x39, 0xf2, 0xb6, 0x0e, /* EES761EP1 */
0x98, 0xa7, 0xae, 0x10, 0xbf, 0xfd, 0x02, 0xcc, 0x76, 0x43},
{0x29, 0xac, 0x2d, 0x21, 0x29, 0x79, 0x98, 0x89, 0x1c, 0xa0, /* EES1087EP1 */
0x6c, 0xed, 0x7d, 0x68, 0x29, 0x9b, 0xb4, 0x9f, 0xe4, 0xd0},
{0x2f, 0xf9, 0x32, 0x25, 0xbc, 0xd5, 0xad, 0xc4, 0x4b, 0x19, /* EES1499EP1 */
0xca, 0xe6, 0x52, 0x89, 0x2e, 0x29, 0x38, 0x5a, 0x61, 0xd7},
{0xaf, 0x39, 0x02, 0xd5, 0xaa, 0xab, 0x29, 0xaa, 0x01, 0x99, /* EES401EP2 */
0xd1, 0xf4, 0x0f, 0x02, 0x35, 0x58, 0x71, 0x58, 0xdb, 0xdb},
{0xa3, 0xd6, 0x5f, 0x7d, 0x5d, 0x66, 0x49, 0x1e, 0x15, 0xbc, /* EES439EP1 */
0xba, 0xf0, 0xfa, 0x07, 0x9d, 0xd3, 0x33, 0xf5, 0x9f, 0x37},
{0xac, 0xea, 0xa3, 0xc8, 0x05, 0x8b, 0x23, 0x68, 0xaa, 0x9a, /* EES443EP1 */
0x3c, 0x9b, 0xdb, 0x7f, 0xbe, 0x7b, 0x49, 0x03, 0x94, 0xc8},
{0x49, 0xfb, 0x90, 0x33, 0xaf, 0x12, 0xc7, 0x29, 0x17, 0x47, /* EES593EP1 */
0xf2, 0x09, 0xb9, 0xc3, 0x5d, 0xf4, 0x21, 0x5a, 0xbf, 0x98},
{0x69, 0xa8, 0x36, 0x3d, 0xe1, 0xec, 0x9e, 0x89, 0xa1, 0x0a, /* EES587EP1 */
0xa5, 0xb7, 0x35, 0xbe, 0x5b, 0x75, 0xb6, 0xd8, 0xe1, 0x9a},
{0x93, 0xfe, 0x81, 0xd5, 0x79, 0x2e, 0x34, 0xd8, 0xe3, 0x1f, /* EES743EP1 */
0xe5, 0x03, 0xb9, 0x06, 0xdc, 0x4f, 0x28, 0xb9, 0xaf, 0x37}
};
uint8_t digests_expected_big_endian[][20] = {
{0xba, 0xeb, 0xb3, 0x0a, 0x1c, 0xcb, 0x90, 0x46, 0x50, 0x52, /* EES401EP1 */
0x20, 0x9d, 0xeb, 0x90, 0x21, 0xbc, 0xe9, 0x19, 0xcf, 0x25},
{0x92, 0x38, 0x0d, 0xa0, 0x6b, 0xef, 0x0c, 0x98, 0x99, 0x13, /* EES449EP1 */
0x3a, 0xb7, 0xba, 0x84, 0xdc, 0xce, 0xea, 0xc4, 0x1e, 0x91},
{0xaf, 0x10, 0xe4, 0x52, 0x51, 0xfb, 0x89, 0xf6, 0x1b, 0xae, /* EES677EP1 */
0xe0, 0x93, 0x72, 0x99, 0x4f, 0x4d, 0xc8, 0xb2, 0x15, 0xbe},
{0x65, 0x38, 0xbf, 0x44, 0xa1, 0xdc, 0xf8, 0x46, 0x25, 0x19, /* EES1087EP2 */
0x1f, 0xe5, 0x99, 0x67, 0x0d, 0x08, 0x3c, 0x63, 0x41, 0x59},
{0x06, 0x76, 0xd2, 0xa3, 0xed, 0xea, 0x00, 0x1f, 0x17, 0xfd, /* EES541EP1 */
0x6e, 0x7e, 0x05, 0xf3, 0xef, 0x30, 0x4e, 0x44, 0x42, 0x5a},
{0x7b, 0x76, 0x8c, 0xf5, 0x97, 0xea, 0x07, 0x4e, 0xea, 0x91, /* EES613EP1 */
0xeb, 0xa4, 0xf1, 0x0e, 0xec, 0x30, 0x7a, 0x7e, 0xae, 0x32},
{0x44, 0xa0, 0x03, 0x19, 0x44, 0x6b, 0x61, 0x5c, 0x97, 0xc0, /* EES887EP1 */
0x19, 0xec, 0xf6, 0x5e, 0x13, 0x28, 0x11, 0xda, 0xc2, 0xcc},
{0x2f, 0x7e, 0xd4, 0x20, 0xe5, 0x84, 0x03, 0xfa, 0xa3, 0xbd, /* EES1171EP1 */
0xd0, 0x64, 0xb7, 0xbe, 0x36, 0x9d, 0xc8, 0x9d, 0x05, 0x0f},
{0x2c, 0x52, 0x35, 0x93, 0x11, 0xbf, 0x88, 0x5d, 0xc8, 0xce, /* EES659EP1 */
0xe8, 0x7a, 0x3c, 0xb8, 0x23, 0x08, 0x73, 0xbf, 0xb2, 0xcb},
{0xe0, 0x48, 0xa2, 0xcc, 0x52, 0x78, 0x53, 0x54, 0xf4, 0xfd, /* EES761EP1 */
0x0e, 0xb9, 0x23, 0x97, 0x7f, 0x9c, 0xa8, 0x13, 0x32, 0xe1},
{0x33, 0x95, 0x90, 0x70, 0xee, 0x95, 0x7e, 0xcf, 0x1d, 0xc7, /* EES1087EP1 */
0x6e, 0x33, 0xa7, 0xf6, 0x07, 0xff, 0x92, 0xa2, 0x9d, 0xdc},
{0x2f, 0x5e, 0x7c, 0x7b, 0xb7, 0x23, 0x13, 0x4d, 0x9e, 0xb5, /* EES1499EP1 */
0x82, 0x52, 0xd6, 0x57, 0xee, 0xc7, 0x44, 0x31, 0x4c, 0x8e},
{0x00, 0xb5, 0xbe, 0x7e, 0xa3, 0x9b, 0xd4, 0xf8, 0x12, 0xf5, /* EES401EP2 */
0xa6, 0x7d, 0x44, 0xa4, 0x89, 0xf4, 0xbf, 0xb7, 0x91, 0x43},
{0x77, 0x70, 0xef, 0x2c, 0x70, 0x8b, 0x40, 0xf5, 0x15, 0xba, /* EES439EP1 */
0xf4, 0x03, 0xef, 0xaa, 0x18, 0xbe, 0x04, 0x11, 0xd4, 0x59},
{0x46, 0x96, 0xa9, 0x58, 0xae, 0xe6, 0x14, 0x75, 0x0c, 0x22, /* EES443EP1 */
0x78, 0x02, 0x5f, 0xe4, 0x6b, 0x94, 0xd4, 0x33, 0x75, 0x64},
{0xf3, 0x1c, 0x73, 0x9b, 0x84, 0x8b, 0xda, 0x76, 0xb6, 0xcc, /* EES593EP1 */
0xf1, 0xf9, 0x4b, 0xc4, 0x85, 0x5f, 0xec, 0xf7, 0x86, 0x4a},
{0xb1, 0xa3, 0x11, 0xdc, 0x48, 0x40, 0xc1, 0x9f, 0x3e, 0x56, /* EES587EP1 */
0x60, 0x8e, 0xcf, 0xd5, 0x76, 0xa7, 0x7c, 0x78, 0x84, 0x39},
{0x35, 0xe1, 0x67, 0x89, 0x9d, 0x44, 0x26, 0x91, 0xaf, 0xc3, /* EES743EP1 */
0x69, 0x41, 0x82, 0xeb, 0x3b, 0x8c, 0xc4, 0xfd, 0xe5, 0x08}
};
uint8_t big_endian = htons(1) == 1;
for (i=0; i<sizeof(param_arr)/sizeof(param_arr[0]); i++) {
valid &= test_encr_decr_nondet(¶m_arr[i]);
valid &= test_encr_decr_det(¶m_arr[i], big_endian?digests_expected_big_endian[i]:digests_expected_little_endian[i]);
}
print_result("test_encr_decr", valid);
return valid;
}
uint8_t test_ntru() {
uint8_t valid = test_keygen();
valid &= test_encr_decr();
return valid;
}
|