File: test_poly.c

package info (click to toggle)
libntru 0.5-3
  • links: PTS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 896 kB
  • sloc: ansic: 9,370; perl: 3,521; makefile: 22; sh: 10
file content (281 lines) | stat: -rw-r--r-- 8,954 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#include <stdio.h>
#include <string.h>
#include "poly.h"
#include "ntru.h"
#include "test_util.h"
#include "test_poly.h"

/**
 * @brief Multiplication of two general polynomials
 *
 * Multiplies a NtruIntPoly by another. The number of coefficients
 * must be the same for both polynomials.
 *
 * @param a a general polynomial
 * @param b a general polynomial
 * @param c output parameter; a pointer to store the new polynomial
 * @return 0 if the number of coefficients differ, 1 otherwise
 */
uint8_t ntru_mult_int_nomod(NtruIntPoly *a, NtruIntPoly *b, NtruIntPoly *c) {
    uint16_t N = a->N;
    if (N != b->N)
        return 0;
    c->N = N;

    uint16_t i, k;
    for (k=0; k<N; k++) {
        int32_t ck = 0;
        for (i=0; i<N; i++)
            ck += b->coeffs[i] * a->coeffs[(N+k-i)%N];
        c->coeffs[k] = ck;
    }

    return 1;
}

/** tests ntru_mult_int() */
uint8_t test_mult_int() {
    uint8_t valid = 1;

    /* multiplication modulo q */
    NtruIntPoly a1 = {11, {-1, 1, 1, 0, -1, 0, 1, 0, 0, 1, -1}};
    NtruIntPoly b1 = {11, {14, 11, 26, 24, 14, 16, 30, 7, 25, 6, 19}};
    NtruIntPoly c1;
    ntru_mult_int(&a1, &b1, &c1, 32-1);
    NtruIntPoly c1_exp = {11, {3, 25, -10, 21, 10, 7, 6, 7, 5, 29, -7}};
    valid &= equals_int_mod(&c1_exp, &c1, 32);

    /* ntru_mult_mod should give the same result as ntru_mult_int_nomod followed by ntru_mod_mask */
    NtruIntPoly a2 = {5, {1278, 1451, 850, 1071, 942}};
    NtruIntPoly b2 = {5, {571, 52, 1096, 1800, 662}};
    NtruIntPoly c2, c2_exp;
    valid &= ntru_mult_int(&a2, &b2, &c2, 2048-1);
    valid &= ntru_mult_int_nomod(&a2, &b2, &c2_exp);
    ntru_mod_mask(&c2_exp, 2048-1);
    valid &= equals_int_mod(&c2_exp, &c2, 2048);

    NtruRandGen rng = NTRU_RNG_DEFAULT;
    NtruRandContext rand_ctx;
    valid &= ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
    int i;
    for (i=0; i<10; i++) {
        uint16_t N;
        valid &= rand_ctx.rand_gen->generate((uint8_t*)&N, sizeof N, &rand_ctx);
        N = 100 + (N%(NTRU_MAX_DEGREE-100));
        NtruIntPoly a3, b3, c3, c3_exp;
        valid &= rand_int(N, 11, &a3, &rand_ctx);
        valid &= rand_int(N, 11, &b3, &rand_ctx);
        valid &= ntru_mult_int_nomod(&a3, &b3, &c3_exp);
        ntru_mod_mask(&c3_exp, 2048-1);
        valid &= ntru_mult_int_16(&a3, &b3, &c3, 2048-1);
        valid &= equals_int_mod(&c3_exp, &c3, 2048);
#ifndef __ARMEL__
        valid &= ntru_mult_int_64(&a3, &b3, &c3, 2048-1);
        valid &= equals_int_mod(&c3_exp, &c3, 2048);
#endif
    }

    valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
    print_result("test_mult_int", valid);
    return valid;
}

/* tests ntru_mult_tern() */
uint8_t test_mult_tern() {
    NtruRandGen rng = NTRU_RNG_DEFAULT;
    NtruRandContext rand_ctx;
    uint8_t valid = ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;

    NtruTernPoly a;
    valid &= ntru_rand_tern(11, 3, 3, &a, &rand_ctx);
    NtruIntPoly b;
    valid &= rand_int(11, 5, &b, &rand_ctx);
    NtruIntPoly a_int;
    ntru_tern_to_int(&a, &a_int);
    NtruIntPoly c_int;
    ntru_mult_int(&a_int, &b, &c_int, 32-1);
    NtruIntPoly c_tern;
    ntru_mult_tern_32(&b, &a, &c_tern, 32-1);
    valid &= equals_int_mod(&c_tern, &c_int, 32);
#ifndef __ARMEL__
    ntru_mult_tern_64(&b, &a, &c_tern, 32-1);
    valid &= equals_int_mod(&c_tern, &c_int, 32);
#endif
#ifdef __SSSE3__
    ntru_mult_tern_sse(&b, &a, &c_tern, 32-1);
    valid &= equals_int_mod(&c_tern, &c_int, 32);
#endif

    int i;
    for (i=0; i<10; i++) {
        uint16_t N;
        valid &= rand_ctx.rand_gen->generate((uint8_t*)&N, sizeof N, &rand_ctx);
        N = 100 + (N%(NTRU_MAX_DEGREE-100));
        uint16_t num_ones;
        valid &= rand_ctx.rand_gen->generate((uint8_t*)&num_ones, sizeof num_ones, &rand_ctx);
        num_ones %= N/2;
        num_ones %= NTRU_MAX_ONES;
        uint16_t num_neg_ones;
        valid &= rand_ctx.rand_gen->generate((uint8_t*)&num_neg_ones, sizeof num_neg_ones, &rand_ctx);
        num_neg_ones %= N/2;
        num_neg_ones %= NTRU_MAX_ONES;
        valid &= ntru_rand_tern(N, num_ones, num_neg_ones, &a, &rand_ctx);
        valid &= rand_int(N, 11, &b, &rand_ctx);
        ntru_tern_to_int(&a, &a_int);
        ntru_mult_int_nomod(&a_int, &b, &c_int);
        ntru_mult_tern_32(&b, &a, &c_tern, 2048-1);
        valid &= equals_int_mod(&c_tern, &c_int, 2048);
#ifndef __ARMEL__
        ntru_mult_tern_64(&b, &a, &c_tern, 2048-1);
        valid &= equals_int_mod(&c_tern, &c_int, 2048);
#endif
#ifdef __SSSE3__
        ntru_mult_tern_sse(&b, &a, &c_tern, 2048-1);
        valid &= equals_int_mod(&c_tern, &c_int, 2048);
#endif
    }

    valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;

    print_result("test_mult_tern", valid);
    return valid;
}

#ifndef NTRU_AVOID_HAMMING_WT_PATENT
/* tests ntru_mult_prod() */
uint8_t test_mult_prod() {
    uint8_t valid = 1;
    uint16_t i;
    NtruRandGen rng = NTRU_RNG_DEFAULT;
    NtruRandContext rand_ctx;
    valid &= ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
    uint16_t log_modulus = 11;
    uint16_t modulus = 1 << log_modulus;
    for (i=0; i<10; i++) {
        NtruProdPoly a;
        valid &= ntru_rand_prod(853, 8, 8, 8, 9, &a, &rand_ctx);
        NtruIntPoly b;
        valid &= rand_int(853, 1<<log_modulus, &b, &rand_ctx);
        NtruIntPoly c_prod;
        ntru_mult_prod(&b, &a, &c_prod, modulus-1);
        NtruIntPoly a_int;
        ntru_prod_to_int(&a, &a_int, modulus);
        NtruIntPoly c_int;
        ntru_mult_int(&a_int, &b, &c_int, modulus-1);
        valid &= equals_int_mod(&c_prod, &c_int, log_modulus);
    }
    valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;

    print_result("test_mult_prod", valid);
    return valid;
}
#endif   /* NTRU_AVOID_HAMMING_WT_PATENT */

uint8_t verify_inverse(NtruPrivPoly *a, NtruIntPoly *b, uint16_t modulus) {
    NtruIntPoly c, a_int;

    ntru_priv_to_int(a, &a_int, modulus);
    ntru_mult_fac(&a_int, 3);
    a_int.coeffs[0] += 1;

    ntru_mult_int(&a_int, b, &c, modulus-1);
    ntru_mod_mask(&c, modulus-1);
    return ntru_equals1(&c);
}

/* tests ntru_invert() */
uint8_t test_inv() {
    uint8_t valid = 1;

    /* Verify a short polynomial */
    NtruPrivPoly a1 = {0, {{11, 4, 4, {1, 2, 6, 9}, {0, 3, 4, 10}}}};
    NtruIntPoly b1;
    uint8_t invertible = ntru_invert_32(&a1, 32-1, &b1);
    valid &= invertible;
    valid &= verify_inverse(&a1, &b1, 32);
    invertible &= ntru_invert_64(&a1, 32-1, &b1);
    valid &= invertible;
    valid &= verify_inverse(&a1, &b1, 32);

    /* test 3 random polynomials */
    uint16_t num_invertible = 0;
    NtruRandGen rng = NTRU_RNG_DEFAULT;
    NtruRandContext rand_ctx;
    valid &= ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
    while (num_invertible < 3) {
        NtruPrivPoly a2;
        a2.prod_flag = 0;   /* ternary */
        valid &= ntru_rand_tern(853, 100, 100, &a2.poly.tern, &rand_ctx);

        NtruIntPoly b;
        uint8_t invertible = ntru_invert(&a2, 2048-1, &b);
        if (invertible) {
            valid &= verify_inverse(&a2, &b, 2048);
            num_invertible++;
        }
    }
#ifdef NTRU_AVOID_HAMMING_WT_PATENT
    num_invertible = 0;
    while (num_invertible < 3) {
        NtruPrivPoly a3;
        a3.prod_flag = 0;   /* ternary */
        valid &= ntru_rand_tern(853, 100, 100, &a3.poly.tern, &rand_ctx);

        NtruIntPoly b;
        uint8_t invertible = ntru_invert(&a3, 2048-1, &b);
        if (invertible) {
            valid &= verify_inverse(&a3, &b, 2048);
            num_invertible++;
        }
    }
#endif   /* NTRU_AVOID_HAMMING_WT_PATENT */
    valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;

    /* test a non-invertible polynomial */
    NtruPrivPoly a2 = {0, {{11, 2, 3, {3, 10}, {0, 6, 8}}}};
    NtruIntPoly b2;
    invertible = ntru_invert(&a2, 32-1, &b2);
    valid &= !invertible;

    print_result("test_inv", valid);
    return valid;
}

uint8_t test_arr() {
    NtruEncParams params = EES1087EP1;
    uint8_t a[ntru_enc_len(&params)];
    NtruIntPoly p1;
    NtruRandGen rng = NTRU_RNG_DEFAULT;
    NtruRandContext rand_ctx;
    uint8_t valid = ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
    valid &= rand_int(params.N, 11, &p1, &rand_ctx);
    ntru_to_arr_32(&p1, params.q, a);
    valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
    NtruIntPoly p2;
    ntru_from_arr(a, params.N, params.q, &p2);
    valid &= equals_int(&p1, &p2);

    uint8_t b[sizeof(a)];
    ntru_to_arr_64(&p1, params.q, b);
    valid &= memcmp(a, b, sizeof a) == 0;

#ifdef __SSSE3__
    ntru_to_arr_sse_2048(&p1, b);
    valid &= memcmp(a, b, sizeof a) == 0;
#endif

    print_result("test_arr", valid);
    return valid;
}

uint8_t test_poly() {
    uint8_t valid = 1;
    valid &= test_mult_int();
    valid &= test_mult_tern();
#ifndef NTRU_AVOID_HAMMING_WT_PATENT
    valid &= test_mult_prod();
#endif   /* NTRU_AVOID_HAMMING_WT_PATENT */
    valid &= test_inv();
    valid &= test_arr();
    return valid;
}