1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
#include <stdio.h>
#include <string.h>
#include "poly.h"
#include "ntru.h"
#include "test_util.h"
#include "test_poly.h"
/**
* @brief Multiplication of two general polynomials
*
* Multiplies a NtruIntPoly by another. The number of coefficients
* must be the same for both polynomials.
*
* @param a a general polynomial
* @param b a general polynomial
* @param c output parameter; a pointer to store the new polynomial
* @return 0 if the number of coefficients differ, 1 otherwise
*/
uint8_t ntru_mult_int_nomod(NtruIntPoly *a, NtruIntPoly *b, NtruIntPoly *c) {
uint16_t N = a->N;
if (N != b->N)
return 0;
c->N = N;
uint16_t i, k;
for (k=0; k<N; k++) {
int32_t ck = 0;
for (i=0; i<N; i++)
ck += b->coeffs[i] * a->coeffs[(N+k-i)%N];
c->coeffs[k] = ck;
}
return 1;
}
/** tests ntru_mult_int() */
uint8_t test_mult_int() {
uint8_t valid = 1;
/* multiplication modulo q */
NtruIntPoly a1 = {11, {-1, 1, 1, 0, -1, 0, 1, 0, 0, 1, -1}};
NtruIntPoly b1 = {11, {14, 11, 26, 24, 14, 16, 30, 7, 25, 6, 19}};
NtruIntPoly c1;
ntru_mult_int(&a1, &b1, &c1, 32-1);
NtruIntPoly c1_exp = {11, {3, 25, -10, 21, 10, 7, 6, 7, 5, 29, -7}};
valid &= equals_int_mod(&c1_exp, &c1, 32);
/* ntru_mult_mod should give the same result as ntru_mult_int_nomod followed by ntru_mod_mask */
NtruIntPoly a2 = {5, {1278, 1451, 850, 1071, 942}};
NtruIntPoly b2 = {5, {571, 52, 1096, 1800, 662}};
NtruIntPoly c2, c2_exp;
valid &= ntru_mult_int(&a2, &b2, &c2, 2048-1);
valid &= ntru_mult_int_nomod(&a2, &b2, &c2_exp);
ntru_mod_mask(&c2_exp, 2048-1);
valid &= equals_int_mod(&c2_exp, &c2, 2048);
NtruRandGen rng = NTRU_RNG_DEFAULT;
NtruRandContext rand_ctx;
valid &= ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
int i;
for (i=0; i<10; i++) {
uint16_t N;
valid &= rand_ctx.rand_gen->generate((uint8_t*)&N, sizeof N, &rand_ctx);
N = 100 + (N%(NTRU_MAX_DEGREE-100));
NtruIntPoly a3, b3, c3, c3_exp;
valid &= rand_int(N, 11, &a3, &rand_ctx);
valid &= rand_int(N, 11, &b3, &rand_ctx);
valid &= ntru_mult_int_nomod(&a3, &b3, &c3_exp);
ntru_mod_mask(&c3_exp, 2048-1);
valid &= ntru_mult_int_16(&a3, &b3, &c3, 2048-1);
valid &= equals_int_mod(&c3_exp, &c3, 2048);
#ifndef __ARMEL__
valid &= ntru_mult_int_64(&a3, &b3, &c3, 2048-1);
valid &= equals_int_mod(&c3_exp, &c3, 2048);
#endif
}
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
print_result("test_mult_int", valid);
return valid;
}
/* tests ntru_mult_tern() */
uint8_t test_mult_tern() {
NtruRandGen rng = NTRU_RNG_DEFAULT;
NtruRandContext rand_ctx;
uint8_t valid = ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
NtruTernPoly a;
valid &= ntru_rand_tern(11, 3, 3, &a, &rand_ctx);
NtruIntPoly b;
valid &= rand_int(11, 5, &b, &rand_ctx);
NtruIntPoly a_int;
ntru_tern_to_int(&a, &a_int);
NtruIntPoly c_int;
ntru_mult_int(&a_int, &b, &c_int, 32-1);
NtruIntPoly c_tern;
ntru_mult_tern_32(&b, &a, &c_tern, 32-1);
valid &= equals_int_mod(&c_tern, &c_int, 32);
#ifndef __ARMEL__
ntru_mult_tern_64(&b, &a, &c_tern, 32-1);
valid &= equals_int_mod(&c_tern, &c_int, 32);
#endif
#ifdef __SSSE3__
ntru_mult_tern_sse(&b, &a, &c_tern, 32-1);
valid &= equals_int_mod(&c_tern, &c_int, 32);
#endif
int i;
for (i=0; i<10; i++) {
uint16_t N;
valid &= rand_ctx.rand_gen->generate((uint8_t*)&N, sizeof N, &rand_ctx);
N = 100 + (N%(NTRU_MAX_DEGREE-100));
uint16_t num_ones;
valid &= rand_ctx.rand_gen->generate((uint8_t*)&num_ones, sizeof num_ones, &rand_ctx);
num_ones %= N/2;
num_ones %= NTRU_MAX_ONES;
uint16_t num_neg_ones;
valid &= rand_ctx.rand_gen->generate((uint8_t*)&num_neg_ones, sizeof num_neg_ones, &rand_ctx);
num_neg_ones %= N/2;
num_neg_ones %= NTRU_MAX_ONES;
valid &= ntru_rand_tern(N, num_ones, num_neg_ones, &a, &rand_ctx);
valid &= rand_int(N, 11, &b, &rand_ctx);
ntru_tern_to_int(&a, &a_int);
ntru_mult_int_nomod(&a_int, &b, &c_int);
ntru_mult_tern_32(&b, &a, &c_tern, 2048-1);
valid &= equals_int_mod(&c_tern, &c_int, 2048);
#ifndef __ARMEL__
ntru_mult_tern_64(&b, &a, &c_tern, 2048-1);
valid &= equals_int_mod(&c_tern, &c_int, 2048);
#endif
#ifdef __SSSE3__
ntru_mult_tern_sse(&b, &a, &c_tern, 2048-1);
valid &= equals_int_mod(&c_tern, &c_int, 2048);
#endif
}
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
print_result("test_mult_tern", valid);
return valid;
}
#ifndef NTRU_AVOID_HAMMING_WT_PATENT
/* tests ntru_mult_prod() */
uint8_t test_mult_prod() {
uint8_t valid = 1;
uint16_t i;
NtruRandGen rng = NTRU_RNG_DEFAULT;
NtruRandContext rand_ctx;
valid &= ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
uint16_t log_modulus = 11;
uint16_t modulus = 1 << log_modulus;
for (i=0; i<10; i++) {
NtruProdPoly a;
valid &= ntru_rand_prod(853, 8, 8, 8, 9, &a, &rand_ctx);
NtruIntPoly b;
valid &= rand_int(853, 1<<log_modulus, &b, &rand_ctx);
NtruIntPoly c_prod;
ntru_mult_prod(&b, &a, &c_prod, modulus-1);
NtruIntPoly a_int;
ntru_prod_to_int(&a, &a_int, modulus);
NtruIntPoly c_int;
ntru_mult_int(&a_int, &b, &c_int, modulus-1);
valid &= equals_int_mod(&c_prod, &c_int, log_modulus);
}
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
print_result("test_mult_prod", valid);
return valid;
}
#endif /* NTRU_AVOID_HAMMING_WT_PATENT */
uint8_t verify_inverse(NtruPrivPoly *a, NtruIntPoly *b, uint16_t modulus) {
NtruIntPoly c, a_int;
ntru_priv_to_int(a, &a_int, modulus);
ntru_mult_fac(&a_int, 3);
a_int.coeffs[0] += 1;
ntru_mult_int(&a_int, b, &c, modulus-1);
ntru_mod_mask(&c, modulus-1);
return ntru_equals1(&c);
}
/* tests ntru_invert() */
uint8_t test_inv() {
uint8_t valid = 1;
/* Verify a short polynomial */
NtruPrivPoly a1 = {0, {{11, 4, 4, {1, 2, 6, 9}, {0, 3, 4, 10}}}};
NtruIntPoly b1;
uint8_t invertible = ntru_invert_32(&a1, 32-1, &b1);
valid &= invertible;
valid &= verify_inverse(&a1, &b1, 32);
invertible &= ntru_invert_64(&a1, 32-1, &b1);
valid &= invertible;
valid &= verify_inverse(&a1, &b1, 32);
/* test 3 random polynomials */
uint16_t num_invertible = 0;
NtruRandGen rng = NTRU_RNG_DEFAULT;
NtruRandContext rand_ctx;
valid &= ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
while (num_invertible < 3) {
NtruPrivPoly a2;
a2.prod_flag = 0; /* ternary */
valid &= ntru_rand_tern(853, 100, 100, &a2.poly.tern, &rand_ctx);
NtruIntPoly b;
uint8_t invertible = ntru_invert(&a2, 2048-1, &b);
if (invertible) {
valid &= verify_inverse(&a2, &b, 2048);
num_invertible++;
}
}
#ifdef NTRU_AVOID_HAMMING_WT_PATENT
num_invertible = 0;
while (num_invertible < 3) {
NtruPrivPoly a3;
a3.prod_flag = 0; /* ternary */
valid &= ntru_rand_tern(853, 100, 100, &a3.poly.tern, &rand_ctx);
NtruIntPoly b;
uint8_t invertible = ntru_invert(&a3, 2048-1, &b);
if (invertible) {
valid &= verify_inverse(&a3, &b, 2048);
num_invertible++;
}
}
#endif /* NTRU_AVOID_HAMMING_WT_PATENT */
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
/* test a non-invertible polynomial */
NtruPrivPoly a2 = {0, {{11, 2, 3, {3, 10}, {0, 6, 8}}}};
NtruIntPoly b2;
invertible = ntru_invert(&a2, 32-1, &b2);
valid &= !invertible;
print_result("test_inv", valid);
return valid;
}
uint8_t test_arr() {
NtruEncParams params = EES1087EP1;
uint8_t a[ntru_enc_len(¶ms)];
NtruIntPoly p1;
NtruRandGen rng = NTRU_RNG_DEFAULT;
NtruRandContext rand_ctx;
uint8_t valid = ntru_rand_init(&rand_ctx, &rng) == NTRU_SUCCESS;
valid &= rand_int(params.N, 11, &p1, &rand_ctx);
ntru_to_arr_32(&p1, params.q, a);
valid &= ntru_rand_release(&rand_ctx) == NTRU_SUCCESS;
NtruIntPoly p2;
ntru_from_arr(a, params.N, params.q, &p2);
valid &= equals_int(&p1, &p2);
uint8_t b[sizeof(a)];
ntru_to_arr_64(&p1, params.q, b);
valid &= memcmp(a, b, sizeof a) == 0;
#ifdef __SSSE3__
ntru_to_arr_sse_2048(&p1, b);
valid &= memcmp(a, b, sizeof a) == 0;
#endif
print_result("test_arr", valid);
return valid;
}
uint8_t test_poly() {
uint8_t valid = 1;
valid &= test_mult_int();
valid &= test_mult_tern();
#ifndef NTRU_AVOID_HAMMING_WT_PATENT
valid &= test_mult_prod();
#endif /* NTRU_AVOID_HAMMING_WT_PATENT */
valid &= test_inv();
valid &= test_arr();
return valid;
}
|