1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
// SPDX-License-Identifier: LGPL-2.1-or-later
/**
* This file is part of libnvme.
* Copyright (c) 2022 Code Construct
*/
#undef NDEBUG
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <ccan/array_size/array_size.h>
#include <ccan/endian/endian.h>
#include "libnvme-mi.h"
#include "nvme/private.h"
#include "utils.h"
/* 4096 byte max MCTP message, plus space for header data */
#define MAX_BUFSIZ 8192
struct test_peer;
typedef int (*rx_test_fn)(struct test_peer *peer, void *buf, size_t len);
typedef int (*poll_test_fn)(struct test_peer *peer,
struct pollfd *fds, nfds_t nfds, int timeout);
/* Our fake MCTP "peer".
*
* The terms TX (transmit) and RX (receive) are from the perspective of
* the NVMe device. TX is device-to-libnvme, RX is libnvme-to-device.
*
* The RX and TX buffers are linear versions of the data sent and received by
* libnvme-mi, and *include* the MCTP message type byte (even though it's
* omitted in the sendmsg/recvmsg interface), so that the buffer inspection
* in the tests can exactly match the NVMe-MI spec packet diagrams.
*/
static struct test_peer {
/* rx (sendmsg) data sent from libnvme, and return value */
unsigned char rx_buf[MAX_BUFSIZ];
size_t rx_buf_len;
ssize_t rx_rc; /* if zero, return the sendmsg len */
int rx_errno;
/* tx (recvmsg) data to be received by libnvme and return value */
unsigned char tx_buf[MAX_BUFSIZ];
size_t tx_buf_len;
ssize_t tx_rc; /* if zero, return the recvmsg len */
int tx_errno;
/* Optional, called before TX, may set tx_buf according to request.
* Return value stored in tx_res, may be used by test */
rx_test_fn tx_fn;
void *tx_data;
int tx_fn_res;
poll_test_fn poll_fn;
void *poll_data;
/* store sd from socket() setup */
int sd;
} test_peer;
/* ensure tests start from a standard state */
void reset_test_peer(void)
{
int tmp = test_peer.sd;
memset(&test_peer, 0, sizeof(test_peer));
test_peer.tx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.rx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.sd = tmp;
}
/* calculate MIC of peer-to-libnvme data, expand buf by 4 bytes and insert
* the new MIC */
static void test_set_tx_mic(struct test_peer *peer)
{
extern __u32 nvme_mi_crc32_update(__u32 crc, void *data, size_t len);
__u32 crc = 0xffffffff;
__le32 crc_le;
assert(peer->tx_buf_len + sizeof(crc_le) <= MAX_BUFSIZ);
crc = nvme_mi_crc32_update(crc, peer->tx_buf, peer->tx_buf_len);
crc_le = cpu_to_le32(~crc);
memcpy(peer->tx_buf + peer->tx_buf_len, &crc_le, sizeof(crc_le));
peer->tx_buf_len += sizeof(crc_le);
}
int __wrap_socket(int family, int type, int protocol)
{
/* we do an open here to give the mi-mctp code something to close() */
test_peer.sd = open("/dev/null", 0);
return test_peer.sd;
}
ssize_t __wrap_sendmsg(int sd, const struct msghdr *hdr, int flags)
{
size_t i, pos;
assert(sd == test_peer.sd);
test_peer.rx_buf[0] = NVME_MI_MSGTYPE_NVME;
/* gather iovec into buf */
for (i = 0, pos = 1; i < hdr->msg_iovlen; i++) {
struct iovec *iov = &hdr->msg_iov[i];
assert(pos + iov->iov_len < MAX_BUFSIZ - 1);
memcpy(test_peer.rx_buf + pos, iov->iov_base, iov->iov_len);
pos += iov->iov_len;
}
test_peer.rx_buf_len = pos;
errno = test_peer.rx_errno;
return test_peer.rx_rc ?: (pos - 1);
}
ssize_t __wrap_recvmsg(int sd, struct msghdr *hdr, int flags)
{
size_t i, pos, len;
assert(sd == test_peer.sd);
if (test_peer.tx_fn) {
test_peer.tx_fn_res = test_peer.tx_fn(&test_peer,
test_peer.rx_buf,
test_peer.rx_buf_len);
} else {
/* set up a few default response fields; caller may have
* initialised the rest of the response */
test_peer.tx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
test_set_tx_mic(&test_peer);
}
/* scatter buf into iovec */
for (i = 0, pos = 1; i < hdr->msg_iovlen && pos < test_peer.tx_buf_len;
i++) {
struct iovec *iov = &hdr->msg_iov[i];
len = iov->iov_len;
if (len > test_peer.tx_buf_len - pos)
len = test_peer.tx_buf_len - pos;
memcpy(iov->iov_base, test_peer.tx_buf + pos, len);
pos += len;
}
errno = test_peer.tx_errno;
return test_peer.tx_rc ?: (pos - 1);
}
int __wrap_poll(struct pollfd *fds, nfds_t nfds, int timeout)
{
if (!test_peer.poll_fn)
return 1;
return test_peer.poll_fn(&test_peer, fds, nfds, timeout);
}
struct mctp_ioc_tag_ctl;
#ifdef SIOCMCTPALLOCTAG
int test_ioctl_tag(int sd, unsigned long req, struct mctp_ioc_tag_ctl *ctl)
{
assert(sd == test_peer.sd);
switch (req) {
case SIOCMCTPALLOCTAG:
ctl->tag = 1 | MCTP_TAG_PREALLOC | MCTP_TAG_OWNER;
break;
case SIOCMCTPDROPTAG:
assert(tag == 1 | MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
break;
};
return 0;
}
#else
int test_ioctl_tag(int sd, unsigned long req, struct mctp_ioc_tag_ctl *ctl)
{
assert(sd == test_peer.sd);
return 0;
}
#endif
static struct __mi_mctp_socket_ops ops = {
__wrap_socket,
__wrap_sendmsg,
__wrap_recvmsg,
__wrap_poll,
test_ioctl_tag,
};
/* tests */
static void test_rx_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->rx_rc = -1;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static int tx_none(struct test_peer *peer, void *buf, size_t len)
{
return 0;
}
static void test_tx_none(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_buf_len = 0;
peer->tx_fn = tx_none;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_tx_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_rc = -1;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_tx_short(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_buf_len = 11;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static int poll_fn_err(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
return -1;
}
static void test_poll_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->poll_fn = poll_fn_err;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_read_mi_data(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* empty response data */
peer->tx_buf_len = 8 + 32;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
static void test_mi_resp_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* simple error response */
peer->tx_buf[4] = 0x02; /* internal error */
peer->tx_buf_len = 8;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0x2);
}
static void setup_unaligned_ctrl_list_resp(struct test_peer *peer)
{
/* even number of controllers */
peer->tx_buf[8] = 0x02;
peer->tx_buf[9] = 0x00;
/* controller ID 1 */
peer->tx_buf[10] = 0x01;
peer->tx_buf[11] = 0x00;
/* controller ID 2 */
peer->tx_buf[12] = 0x02;
peer->tx_buf[13] = 0x00;
peer->tx_buf_len = 14;
}
/* Will call through the xfer/submit API expecting a full-sized list (so
* resp->data_len is set to sizeof(list)), but the endpoint will return an
* unaligned short list.
*/
static void test_mi_resp_unaligned(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_ctrl_list list;
int rc;
setup_unaligned_ctrl_list_resp(peer);
memset(&list, 0, sizeof(list));
rc = nvme_mi_mi_read_mi_data_ctrl_list(ep, 0, &list);
assert(rc == 0);
assert(le16_to_cpu(list.num) == 2);
assert(le16_to_cpu(list.identifier[0]) == 1);
assert(le16_to_cpu(list.identifier[1]) == 2);
}
/* Will call through the xfer/submit API expecting an unaligned list,
* and get a response of exactly that size.
*/
static void test_mi_resp_unaligned_expected(nvme_mi_ep_t ep,
struct test_peer *peer)
{
/* direct access to the raw submit() API */
extern int nvme_mi_submit(nvme_mi_ep_t ep, struct nvme_mi_req *req,
struct nvme_mi_resp *resp);
struct nvme_mi_mi_resp_hdr resp_hdr;
struct nvme_mi_mi_req_hdr req_hdr;
struct nvme_ctrl_list list;
struct nvme_mi_resp resp;
struct nvme_mi_req req;
int rc;
setup_unaligned_ctrl_list_resp(peer);
memset(&list, 0, sizeof(list));
memset(&req_hdr, 0, sizeof(req_hdr));
req_hdr.hdr.type = NVME_MI_MSGTYPE_NVME;
req_hdr.hdr.nmp = (NVME_MI_ROR_REQ << 7) | (NVME_MI_MT_MI << 3);
req_hdr.opcode = nvme_mi_mi_opcode_mi_data_read;
req_hdr.cdw0 = cpu_to_le32(nvme_mi_dtyp_ctrl_list << 24);
memset(&req, 0, sizeof(req));
req.hdr = &req_hdr.hdr;
req.hdr_len = sizeof(req_hdr);
memset(&resp, 0, sizeof(resp));
resp.hdr = &resp_hdr.hdr;
resp.hdr_len = sizeof(resp_hdr);
resp.data = &list;
resp.data_len = peer->tx_buf_len;
rc = nvme_mi_submit(ep, &req, &resp);
assert(rc == 0);
assert(resp.data_len == 6); /* 2-byte length, 2*2 byte controller IDs */
assert(le16_to_cpu(list.num) == 2);
assert(le16_to_cpu(list.identifier[0]) == 1);
assert(le16_to_cpu(list.identifier[1]) == 2);
}
static void test_admin_resp_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
ctrl = nvme_mi_init_ctrl(ep, 1);
assert(ctrl);
/* Simple error response, will be shorter than the expected Admin
* command response header. */
peer->tx_buf[4] = 0x02; /* internal error */
peer->tx_buf_len = 8;
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(nvme_status_get_type(rc) == NVME_STATUS_TYPE_MI);
assert(nvme_status_get_value(rc) == NVME_MI_RESP_INTERNAL_ERR);
}
/* test: all 4-byte aligned response sizes - should be decoded into the
* response status value. We use an admin command here as the header size will
* be larger than the minimum header size (it contains the completion
* doublewords), and we need to ensure that an error response is correctly
* interpreted, including having the MIC extracted from the message.
*/
static void test_admin_resp_sizes(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
unsigned int i;
int rc;
ctrl = nvme_mi_init_ctrl(ep, 1);
assert(ctrl);
peer->tx_buf[4] = 0x02; /* internal error */
for (i = 8; i <= 4096 + 8; i+=4) {
peer->tx_buf_len = i;
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(nvme_status_get_type(rc) == NVME_STATUS_TYPE_MI);
assert(nvme_status_get_value(rc) == NVME_MI_RESP_INTERNAL_ERR);
}
nvme_mi_close_ctrl(ctrl);
}
/* test: timeout value passed to poll */
static int poll_fn_timeout_value(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
assert(timeout == 3141);
return 1;
}
static void test_poll_timeout_value(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* empty response data */
peer->tx_buf_len = 8 + 32;
peer->poll_fn = poll_fn_timeout_value;
nvme_mi_ep_set_timeout(ep, 3141);
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: poll timeout expiry */
static int poll_fn_timeout(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
return 0;
}
static void test_poll_timeout(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->poll_fn = poll_fn_timeout;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
assert(errno == ETIMEDOUT);
}
/* test: send a More Processing Required response, then the actual response */
struct mpr_tx_info {
int msg_no;
bool admin_quirk;
size_t final_len;
};
static int tx_mpr(struct test_peer *peer, void *buf, size_t len)
{
struct mpr_tx_info *tx_info = peer->tx_data;
memset(peer->tx_buf, 0, sizeof(peer->tx_buf));
peer->tx_buf[0] = NVME_MI_MSGTYPE_NVME;
peer->tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
switch (tx_info->msg_no) {
case 1:
peer->tx_buf[4] = NVME_MI_RESP_MPR;
peer->tx_buf_len = 8;
if (tx_info->admin_quirk) {
peer->tx_buf_len = 20;
}
break;
case 2:
peer->tx_buf[4] = NVME_MI_RESP_SUCCESS;
peer->tx_buf_len = tx_info->final_len;
break;
default:
assert(0);
}
test_set_tx_mic(peer);
tx_info->msg_no++;
return 0;
}
static void test_mpr_mi(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_tx_info tx_info;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
tx_info.admin_quirk = false;
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
static void test_mpr_admin(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct mpr_tx_info tx_info;
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_admin_resp_hdr) + sizeof(id);
tx_info.admin_quirk = false;
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
ctrl = nvme_mi_init_ctrl(ep, 1);
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc == 0);
nvme_mi_close_ctrl(ctrl);
}
/* We have seen drives that send a MPR response as a full Admin message,
* rather than a MI message; these have a larger message body
*/
static void test_mpr_admin_quirked(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct mpr_tx_info tx_info;
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_admin_resp_hdr) + sizeof(id);
tx_info.admin_quirk = true;
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
ctrl = nvme_mi_init_ctrl(ep, 1);
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc == 0);
nvme_mi_close_ctrl(ctrl);
}
/* helpers for the MPR + poll tests */
struct mpr_poll_info {
int poll_no;
uint16_t mprt;
unsigned int timeouts[2];
};
static int poll_fn_mpr_poll(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
struct mpr_poll_info *info = peer->poll_data;
switch (info->poll_no) {
case 1:
case 2:
assert(timeout == info->timeouts[info->poll_no - 1]);
break;
default:
assert(0);
}
info->poll_no++;
return 1;
}
static int tx_fn_mpr_poll(struct test_peer *peer, void *buf, size_t len)
{
struct mpr_tx_info *tx_info = peer->tx_data;
struct mpr_poll_info *poll_info = peer->poll_data;
unsigned int mprt;
memset(peer->tx_buf, 0, sizeof(peer->tx_buf));
peer->tx_buf[0] = NVME_MI_MSGTYPE_NVME;
peer->tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
switch (tx_info->msg_no) {
case 1:
peer->tx_buf[4] = NVME_MI_RESP_MPR;
peer->tx_buf_len = 8;
mprt = poll_info->mprt;
peer->tx_buf[7] = mprt >> 8;
peer->tx_buf[6] = mprt & 0xff;
break;
case 2:
peer->tx_buf[4] = NVME_MI_RESP_SUCCESS;
peer->tx_buf_len = tx_info->final_len;
break;
default:
assert(0);
}
test_set_tx_mic(peer);
tx_info->msg_no++;
return 0;
}
/* test: correct timeout value used from MPR response */
static void test_mpr_timeouts(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 1234;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 1234 * 100;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: MPR value is limited to the max mpr */
static void test_mpr_timeout_clamp(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
nvme_mi_ep_set_mprt_max(ep, 123400);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 1235;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 1234 * 100;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: MPR value of zero doesn't result in poll with zero timeout */
static void test_mpr_mprt_zero(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
nvme_mi_ep_set_mprt_max(ep, 123400);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 0;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 3141;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
#define DEFINE_TEST(name) { #name, test_ ## name }
struct test {
const char *name;
void (*fn)(nvme_mi_ep_t, struct test_peer *);
} tests[] = {
DEFINE_TEST(rx_err),
DEFINE_TEST(tx_none),
DEFINE_TEST(tx_err),
DEFINE_TEST(tx_short),
DEFINE_TEST(read_mi_data),
DEFINE_TEST(poll_err),
DEFINE_TEST(mi_resp_err),
DEFINE_TEST(mi_resp_unaligned),
DEFINE_TEST(mi_resp_unaligned_expected),
DEFINE_TEST(admin_resp_err),
DEFINE_TEST(admin_resp_sizes),
DEFINE_TEST(poll_timeout_value),
DEFINE_TEST(poll_timeout),
DEFINE_TEST(mpr_mi),
DEFINE_TEST(mpr_admin),
DEFINE_TEST(mpr_admin_quirked),
DEFINE_TEST(mpr_timeouts),
DEFINE_TEST(mpr_timeout_clamp),
DEFINE_TEST(mpr_mprt_zero),
};
static void run_test(struct test *test, FILE *logfd, nvme_mi_ep_t ep,
struct test_peer *peer)
{
printf("Running test %s...", test->name);
fflush(stdout);
test->fn(ep, peer);
printf(" OK\n");
test_print_log_buf(logfd);
}
int main(void)
{
nvme_root_t root;
nvme_mi_ep_t ep;
unsigned int i;
FILE *fd;
fd = test_setup_log();
__nvme_mi_mctp_set_ops(&ops);
root = nvme_mi_create_root(fd, DEFAULT_LOGLEVEL);
assert(root);
ep = nvme_mi_open_mctp(root, 0, 0);
assert(ep);
for (i = 0; i < ARRAY_SIZE(tests); i++) {
reset_test_peer();
run_test(&tests[i], fd, ep, &test_peer);
}
nvme_mi_close(ep);
nvme_mi_free_root(root);
test_close_log(fd);
return EXIT_SUCCESS;
}
|