1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
|
// SPDX-License-Identifier: LGPL-2.1-or-later
/**
* This file is part of libnvme.
* Copyright (c) 2022 Code Construct
*/
#undef NDEBUG
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <ccan/array_size/array_size.h>
#include <ccan/endian/endian.h>
#include "libnvme-mi.h"
#include "nvme/private.h"
#include "utils.h"
#if HAVE_LINUX_MCTP_H
#include <linux/mctp.h>
#else
#include "nvme/mi-mctp-compat.h"
#endif
/* 4096 byte max MCTP message, plus space for header data */
#define MAX_BUFSIZ 8192
struct test_peer;
typedef int (*rx_test_fn)(struct test_peer *peer, void *buf, size_t len, int sd);
typedef int (*poll_test_fn)(struct test_peer *peer,
struct pollfd *fds, nfds_t nfds, int timeout);
#define TEST_PEER_SD_COMMANDS_IDX (0)
#define TEST_PEER_SD_AEMS_IDX (1)
/* Our fake MCTP "peer".
*
* The terms TX (transmit) and RX (receive) are from the perspective of
* the NVMe device. TX is device-to-libnvme, RX is libnvme-to-device.
*
* The RX and TX buffers are linear versions of the data sent and received by
* libnvme-mi, and *include* the MCTP message type byte (even though it's
* omitted in the sendmsg/recvmsg interface), so that the buffer inspection
* in the tests can exactly match the NVMe-MI spec packet diagrams.
*/
static struct test_peer {
/* rx (sendmsg) data sent from libnvme, and return value */
unsigned char rx_buf[MAX_BUFSIZ];
size_t rx_buf_len;
ssize_t rx_rc; /* if zero, return the sendmsg len */
int rx_errno;
/* tx (recvmsg) data to be received by libnvme and return value */
unsigned char tx_buf[MAX_BUFSIZ];
size_t tx_buf_len;
ssize_t tx_rc; /* if zero, return the recvmsg len */
int tx_errno;
/* Optional, called before TX, may set tx_buf according to request.
* Return value stored in tx_res, may be used by test */
rx_test_fn tx_fn;
void *tx_data;
int tx_fn_res;
poll_test_fn poll_fn;
void *poll_data;
/* store sd from socket() setup */
int sd[2];
} test_peer;
/* ensure tests start from a standard state */
void reset_test_peer(void)
{
int temp_sd[2] = {test_peer.sd[TEST_PEER_SD_COMMANDS_IDX],
test_peer.sd[TEST_PEER_SD_AEMS_IDX]};
memset(&test_peer, 0, sizeof(test_peer));
test_peer.tx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.rx_buf[0] = NVME_MI_MSGTYPE_NVME;
memcpy(test_peer.sd, temp_sd, 2*sizeof(*temp_sd));
}
/* calculate MIC of peer-to-libnvme data, expand buf by 4 bytes and insert
* the new MIC */
static void test_set_tx_mic(struct test_peer *peer)
{
extern __u32 nvme_mi_crc32_update(__u32 crc, void *data, size_t len);
__u32 crc = 0xffffffff;
__le32 crc_le;
assert(peer->tx_buf_len + sizeof(crc_le) <= MAX_BUFSIZ);
crc = nvme_mi_crc32_update(crc, peer->tx_buf, peer->tx_buf_len);
crc_le = cpu_to_le32(~crc);
memcpy(peer->tx_buf + peer->tx_buf_len, &crc_le, sizeof(crc_le));
peer->tx_buf_len += sizeof(crc_le);
}
int __wrap_msg_socket(void)
{
/* we do an open here to give the mi-mctp code something to close() */
test_peer.sd[TEST_PEER_SD_COMMANDS_IDX] = open("/dev/null", 0);
return test_peer.sd[TEST_PEER_SD_COMMANDS_IDX];
}
int __wrap_aem_socket(__u8 eid, unsigned int network)
{
/* we do an open here to give the mi-mctp code something to close() */
test_peer.sd[TEST_PEER_SD_AEMS_IDX] = open("/dev/null", 0);
return test_peer.sd[TEST_PEER_SD_AEMS_IDX];
}
ssize_t __wrap_sendmsg(int sd, const struct msghdr *hdr, int flags)
{
size_t i, pos;
assert(sd == test_peer.sd[TEST_PEER_SD_COMMANDS_IDX]);
test_peer.rx_buf[0] = NVME_MI_MSGTYPE_NVME;
/* gather iovec into buf */
for (i = 0, pos = 1; i < hdr->msg_iovlen; i++) {
struct iovec *iov = &hdr->msg_iov[i];
assert(pos + iov->iov_len < MAX_BUFSIZ - 1);
memcpy(test_peer.rx_buf + pos, iov->iov_base, iov->iov_len);
pos += iov->iov_len;
}
test_peer.rx_buf_len = pos;
errno = test_peer.rx_errno;
return test_peer.rx_rc ?: (pos - 1);
}
ssize_t __wrap_recvmsg(int sd, struct msghdr *hdr, int flags)
{
size_t i, pos, len;
assert(sd == test_peer.sd[TEST_PEER_SD_COMMANDS_IDX] ||
sd == test_peer.sd[TEST_PEER_SD_AEMS_IDX]);
//Check for purge case
if (flags & MSG_TRUNC)
return 0;
if (test_peer.tx_fn) {
test_peer.tx_fn_res = test_peer.tx_fn(&test_peer,
test_peer.rx_buf,
test_peer.rx_buf_len,
sd);
} else {
if (sd == test_peer.sd[TEST_PEER_SD_COMMANDS_IDX] && test_peer.tx_buf_len == 0) {
errno = EAGAIN;
return -1;
}
/* set up a few default response fields; caller may have
* initialised the rest of the response */
test_peer.tx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
test_set_tx_mic(&test_peer);
}
/* scatter buf into iovec */
for (i = 0, pos = 1; i < hdr->msg_iovlen && pos < test_peer.tx_buf_len;
i++) {
struct iovec *iov = &hdr->msg_iov[i];
len = iov->iov_len;
if (len > test_peer.tx_buf_len - pos)
len = test_peer.tx_buf_len - pos;
memcpy(iov->iov_base, test_peer.tx_buf + pos, len);
pos += len;
}
errno = test_peer.tx_errno;
test_peer.tx_buf_len = 0; //Clear since this is sent
return test_peer.tx_rc ?: (pos - 1);
}
int __wrap_poll(struct pollfd *fds, nfds_t nfds, int timeout)
{
if (!test_peer.poll_fn)
return 1;
return test_peer.poll_fn(&test_peer, fds, nfds, timeout);
}
struct mctp_ioc_tag_ctl;
#ifdef SIOCMCTPALLOCTAG
int test_ioctl_tag(int sd, unsigned long req, struct mctp_ioc_tag_ctl *ctl)
{
assert(sd == test_peer.sd[TEST_PEER_SD_COMMANDS_IDX]);
switch (req) {
case SIOCMCTPALLOCTAG:
ctl->tag = 1 | MCTP_TAG_PREALLOC | MCTP_TAG_OWNER;
break;
case SIOCMCTPDROPTAG:
assert(ctl->tag == (1 | MCTP_TAG_PREALLOC | MCTP_TAG_OWNER));
break;
};
return 0;
}
#else
int test_ioctl_tag(int sd, unsigned long req, struct mctp_ioc_tag_ctl *ctl)
{
assert(sd == test_peer.sd[TEST_PEER_SD_COMMANDS_IDX]);
return 0;
}
#endif
static struct __mi_mctp_socket_ops ops = {
__wrap_msg_socket,
__wrap_aem_socket,
__wrap_sendmsg,
__wrap_recvmsg,
__wrap_poll,
test_ioctl_tag,
};
/* tests */
static void test_rx_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->rx_rc = -1;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static int tx_none(struct test_peer *peer, void *buf, size_t len, int sd)
{
return 0;
}
static void test_tx_none(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_buf_len = 0;
peer->tx_fn = tx_none;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_tx_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_rc = -1;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_tx_short(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->tx_buf_len = 11;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static int poll_fn_err(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
return -1;
}
static void test_poll_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->poll_fn = poll_fn_err;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
}
static void test_read_mi_data(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* empty response data */
peer->tx_buf_len = 8 + 32;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
static void test_mi_resp_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* simple error response */
peer->tx_buf[4] = 0x02; /* internal error */
peer->tx_buf_len = 8;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0x2);
}
static void setup_unaligned_ctrl_list_resp(struct test_peer *peer)
{
/* even number of controllers */
peer->tx_buf[8] = 0x02;
peer->tx_buf[9] = 0x00;
/* controller ID 1 */
peer->tx_buf[10] = 0x01;
peer->tx_buf[11] = 0x00;
/* controller ID 2 */
peer->tx_buf[12] = 0x02;
peer->tx_buf[13] = 0x00;
peer->tx_buf_len = 14;
}
/* Will call through the xfer/submit API expecting a full-sized list (so
* resp->data_len is set to sizeof(list)), but the endpoint will return an
* unaligned short list.
*/
static void test_mi_resp_unaligned(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_ctrl_list list;
int rc;
setup_unaligned_ctrl_list_resp(peer);
memset(&list, 0, sizeof(list));
rc = nvme_mi_mi_read_mi_data_ctrl_list(ep, 0, &list);
assert(rc == 0);
assert(le16_to_cpu(list.num) == 2);
assert(le16_to_cpu(list.identifier[0]) == 1);
assert(le16_to_cpu(list.identifier[1]) == 2);
}
/* Will call through the xfer/submit API expecting an unaligned list,
* and get a response of exactly that size.
*/
static void test_mi_resp_unaligned_expected(nvme_mi_ep_t ep,
struct test_peer *peer)
{
/* direct access to the raw submit() API */
extern int nvme_mi_submit(nvme_mi_ep_t ep, struct nvme_mi_req *req,
struct nvme_mi_resp *resp);
struct nvme_mi_mi_resp_hdr resp_hdr;
struct nvme_mi_mi_req_hdr req_hdr;
struct nvme_ctrl_list list;
struct nvme_mi_resp resp;
struct nvme_mi_req req;
int rc;
setup_unaligned_ctrl_list_resp(peer);
memset(&list, 0, sizeof(list));
memset(&req_hdr, 0, sizeof(req_hdr));
req_hdr.hdr.type = NVME_MI_MSGTYPE_NVME;
req_hdr.hdr.nmp = (NVME_MI_ROR_REQ << 7) | (NVME_MI_MT_MI << 3);
req_hdr.opcode = nvme_mi_mi_opcode_mi_data_read;
req_hdr.cdw0 = cpu_to_le32(nvme_mi_dtyp_ctrl_list << 24);
memset(&req, 0, sizeof(req));
req.hdr = &req_hdr.hdr;
req.hdr_len = sizeof(req_hdr);
memset(&resp, 0, sizeof(resp));
resp.hdr = &resp_hdr.hdr;
resp.hdr_len = sizeof(resp_hdr);
resp.data = &list;
resp.data_len = peer->tx_buf_len;
rc = nvme_mi_submit(ep, &req, &resp);
assert(rc == 0);
assert(resp.data_len == 6); /* 2-byte length, 2*2 byte controller IDs */
assert(le16_to_cpu(list.num) == 2);
assert(le16_to_cpu(list.identifier[0]) == 1);
assert(le16_to_cpu(list.identifier[1]) == 2);
}
static void test_admin_resp_err(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
ctrl = nvme_mi_init_ctrl(ep, 1);
assert(ctrl);
/* Simple error response, will be shorter than the expected Admin
* command response header. */
peer->tx_buf[4] = 0x02; /* internal error */
peer->tx_buf_len = 8;
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(nvme_status_get_type(rc) == NVME_STATUS_TYPE_MI);
assert(nvme_status_get_value(rc) == NVME_MI_RESP_INTERNAL_ERR);
}
/* test: all 4-byte aligned response sizes - should be decoded into the
* response status value. We use an admin command here as the header size will
* be larger than the minimum header size (it contains the completion
* doublewords), and we need to ensure that an error response is correctly
* interpreted, including having the MIC extracted from the message.
*/
static void test_admin_resp_sizes(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
unsigned int i;
int rc;
ctrl = nvme_mi_init_ctrl(ep, 1);
assert(ctrl);
peer->tx_buf[4] = 0x02; /* internal error */
for (i = 8; i <= 4096 + 8; i+=4) {
peer->tx_buf_len = i;
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(nvme_status_get_type(rc) == NVME_STATUS_TYPE_MI);
assert(nvme_status_get_value(rc) == NVME_MI_RESP_INTERNAL_ERR);
}
nvme_mi_close_ctrl(ctrl);
}
/* test: timeout value passed to poll */
static int poll_fn_timeout_value(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
assert(timeout == 3141);
return 1;
}
static void test_poll_timeout_value(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
/* empty response data */
peer->tx_buf_len = 8 + 32;
peer->poll_fn = poll_fn_timeout_value;
nvme_mi_ep_set_timeout(ep, 3141);
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: poll timeout expiry */
static int poll_fn_timeout(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
return 0;
}
static void test_poll_timeout(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
int rc;
peer->poll_fn = poll_fn_timeout;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc != 0);
assert(errno == ETIMEDOUT);
}
/* test: send a More Processing Required response, then the actual response */
struct mpr_tx_info {
int msg_no;
bool admin_quirk;
size_t final_len;
};
static int tx_mpr(struct test_peer *peer, void *buf, size_t len, int sd)
{
struct mpr_tx_info *tx_info = peer->tx_data;
assert(sd == peer->sd[TEST_PEER_SD_COMMANDS_IDX]);
memset(peer->tx_buf, 0, sizeof(peer->tx_buf));
peer->tx_buf[0] = NVME_MI_MSGTYPE_NVME;
peer->tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
switch (tx_info->msg_no) {
case 1:
peer->tx_buf[4] = NVME_MI_RESP_MPR;
peer->tx_buf_len = 8;
if (tx_info->admin_quirk) {
peer->tx_buf_len = 20;
}
break;
case 2:
peer->tx_buf[4] = NVME_MI_RESP_SUCCESS;
peer->tx_buf_len = tx_info->final_len;
break;
default:
assert(0);
}
test_set_tx_mic(peer);
tx_info->msg_no++;
return 0;
}
static void test_mpr_mi(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_tx_info tx_info;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
tx_info.admin_quirk = false;
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
static void test_mpr_admin(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct mpr_tx_info tx_info;
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_admin_resp_hdr) + sizeof(id);
tx_info.admin_quirk = false;
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
ctrl = nvme_mi_init_ctrl(ep, 1);
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc == 0);
nvme_mi_close_ctrl(ctrl);
}
/* We have seen drives that send a MPR response as a full Admin message,
* rather than a MI message; these have a larger message body
*/
static void test_mpr_admin_quirked(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct mpr_tx_info tx_info;
struct nvme_id_ctrl id;
nvme_mi_ctrl_t ctrl;
int rc;
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_admin_resp_hdr) + sizeof(id);
tx_info.admin_quirk = true;
peer->tx_fn = tx_mpr;
peer->tx_data = &tx_info;
ctrl = nvme_mi_init_ctrl(ep, 1);
rc = nvme_mi_admin_identify_ctrl(ctrl, &id);
assert(rc == 0);
nvme_mi_close_ctrl(ctrl);
}
/* helpers for the MPR + poll tests */
struct mpr_poll_info {
int poll_no;
uint16_t mprt;
unsigned int timeouts[2];
};
static int poll_fn_mpr_poll(struct test_peer *peer, struct pollfd *fds,
nfds_t nfds, int timeout)
{
struct mpr_poll_info *info = peer->poll_data;
switch (info->poll_no) {
case 1:
case 2:
assert(timeout == info->timeouts[info->poll_no - 1]);
break;
default:
assert(0);
}
info->poll_no++;
return 1;
}
static int tx_fn_mpr_poll(struct test_peer *peer, void *buf, size_t len, int sd)
{
struct mpr_tx_info *tx_info = peer->tx_data;
struct mpr_poll_info *poll_info = peer->poll_data;
unsigned int mprt;
assert(sd == peer->sd[TEST_PEER_SD_COMMANDS_IDX]);
memset(peer->tx_buf, 0, sizeof(peer->tx_buf));
peer->tx_buf[0] = NVME_MI_MSGTYPE_NVME;
peer->tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
switch (tx_info->msg_no) {
case 1:
peer->tx_buf[4] = NVME_MI_RESP_MPR;
peer->tx_buf_len = 8;
mprt = poll_info->mprt;
peer->tx_buf[7] = mprt >> 8;
peer->tx_buf[6] = mprt & 0xff;
break;
case 2:
peer->tx_buf[4] = NVME_MI_RESP_SUCCESS;
peer->tx_buf_len = tx_info->final_len;
break;
default:
assert(0);
}
test_set_tx_mic(peer);
tx_info->msg_no++;
return 0;
}
/* test: correct timeout value used from MPR response */
static void test_mpr_timeouts(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 1234;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 1234 * 100;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: MPR value is limited to the max mpr */
static void test_mpr_timeout_clamp(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
nvme_mi_ep_set_mprt_max(ep, 123400);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 1235;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 1234 * 100;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
/* test: MPR value of zero doesn't result in poll with zero timeout */
static void test_mpr_mprt_zero(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_read_nvm_ss_info ss_info;
struct mpr_poll_info poll_info;
struct mpr_tx_info tx_info;
int rc;
nvme_mi_ep_set_timeout(ep, 3141);
nvme_mi_ep_set_mprt_max(ep, 123400);
tx_info.msg_no = 1;
tx_info.final_len = sizeof(struct nvme_mi_mi_resp_hdr) + sizeof(ss_info);
poll_info.poll_no = 1;
poll_info.mprt = 0;
poll_info.timeouts[0] = 3141;
poll_info.timeouts[1] = 3141;
peer->tx_fn = tx_fn_mpr_poll;
peer->tx_data = &tx_info;
peer->poll_fn = poll_fn_mpr_poll;
peer->poll_data = &poll_info;
rc = nvme_mi_mi_read_mi_data_subsys(ep, &ss_info);
assert(rc == 0);
}
enum aem_enable_state {
AEM_ES_GET_ENABLED,
AEM_ES_SET_TO_DISABLED,
AEM_ES_ENABLE_SET_ENABLED,
AEM_ES_PROCESS,
AEM_ES_ACK_RESPONSE,
AEM_ES_ACK_RECEIVED
};
enum aem_failure_condition {
AEM_FC_NONE,
AEM_FC_BAD_GET_CONFIG_HEADER_LEN,
AEM_FC_BAD_GET_CONFIG_TOTAL_LEN,
AEM_FC_BAD_GET_CONFIG_BUFFER_LEN,
AEM_FC_BAD_OCC_RSP_HDR_LEN_SYNC,
AEM_FC_BAD_OCC_RSP_TOTAL_LEN_SYNC,
AEM_FC_BAD_OCC_RSP_BUFFER_LEN_SYNC,
AEM_FC_BAD_OCC_RSP_HDR_LEN_AEM,
AEM_FC_BAD_OCC_RSP_TOTAL_LEN_AEM,
AEM_FC_BAD_OCC_RSP_BUFFER_LEN_AEM,
};
struct aem_rcv_enable_fn_data {
enum aem_enable_state state;
enum aem_failure_condition fc;
struct nvme_mi_aem_enabled_map ep_enabled_map;
struct nvme_mi_aem_enabled_map host_enabled_map;
struct nvme_mi_aem_enabled_map aem_during_process_map;
struct nvme_mi_aem_enabled_map ack_events_map;
struct nvme_mi_event *events[256];
int callback_count;
};
static void populate_tx_occ_list(bool aem_not_ack,
struct aem_rcv_enable_fn_data *fn_data, struct nvme_mi_aem_enabled_map *to_send)
{
struct nvme_mi_mi_resp_hdr *resp_hdr =
(struct nvme_mi_mi_resp_hdr *)test_peer.tx_buf;
struct nvme_mi_msg_hdr *mi_msg_hdr =
(struct nvme_mi_msg_hdr *)test_peer.tx_buf;
size_t hdr_len = sizeof(*resp_hdr);
struct nvme_mi_aem_occ_list_hdr *list_hdr =
(struct nvme_mi_aem_occ_list_hdr *)(resp_hdr+1);
//For AEM, the data is actually in request format
//since it originates from the endpoint
if (aem_not_ack) {
list_hdr = (struct nvme_mi_aem_occ_list_hdr *)(mi_msg_hdr+1);
hdr_len = sizeof(*mi_msg_hdr);
mi_msg_hdr->nmp = (NVME_MI_MT_AE << 3);
} else {
resp_hdr->status = 0;
}
list_hdr->aelver = 0;
list_hdr->aeolhl = sizeof(*list_hdr);
list_hdr->numaeo = 0;
__u32 aeoltl = list_hdr->aeolhl;
struct nvme_mi_aem_occ_data *data =
(struct nvme_mi_aem_occ_data *)(list_hdr+1);
for (int i = 0; i < 255; i++) {
if (fn_data->events[i] && to_send->enabled[i]) {
struct nvme_mi_event *event = fn_data->events[i];
list_hdr->numaeo++;
aeoltl += sizeof(struct nvme_mi_aem_occ_data);
aeoltl += event->spec_info_len +
event->vend_spec_info_len;
data->aelhlen = sizeof(*data);
if ((fn_data->fc == AEM_FC_BAD_OCC_RSP_HDR_LEN_SYNC && !aem_not_ack) ||
(fn_data->fc == AEM_FC_BAD_OCC_RSP_HDR_LEN_AEM && aem_not_ack))
data->aelhlen--;
data->aeoui.aeocidi = event->aeocidi;
data->aeoui.aeoi = event->aeoi;
data->aeoui.aessi = event->aessi;
data->aeosil = event->spec_info_len;
data->aeovsil = event->vend_spec_info_len;
if ((fn_data->fc == AEM_FC_BAD_OCC_RSP_TOTAL_LEN_SYNC &&
!aem_not_ack) ||
(fn_data->fc == AEM_FC_BAD_OCC_RSP_TOTAL_LEN_AEM &&
aem_not_ack))
aeoltl -= 1;
//Now the data
uint8_t *spec = (uint8_t *)(data+1);
if (data->aeosil) {
memcpy(spec, event->spec_info, event->spec_info_len);
spec += event->spec_info_len;
}
if (data->aeovsil) {
memcpy(spec, event->vend_spec_info, event->vend_spec_info_len);
spec += event->vend_spec_info_len;
}
data = (struct nvme_mi_aem_occ_data *)(spec);
}
}
nvme_mi_aem_aeolli_set_aeoltl(list_hdr, aeoltl);
test_peer.tx_buf_len = hdr_len + aeoltl;
if ((fn_data->fc == AEM_FC_BAD_OCC_RSP_BUFFER_LEN_SYNC && !aem_not_ack) ||
(fn_data->fc == AEM_FC_BAD_OCC_RSP_BUFFER_LEN_AEM && aem_not_ack))
test_peer.tx_buf_len--;
test_set_tx_mic(&test_peer);
}
static void check_aem_sync_message(struct nvme_mi_aem_enabled_map *expected_mask,
struct nvme_mi_aem_enabled_map *expected_state,
struct aem_rcv_enable_fn_data *fn_data)
{
//Check the RX buffer for the endpoint. We should be getting a CONFIG SET AEM
//with all enabled items disabled
struct nvme_mi_mi_req_hdr *req =
(struct nvme_mi_mi_req_hdr *)test_peer.rx_buf;
struct nvme_mi_aem_supported_list *list =
(struct nvme_mi_aem_supported_list *)(req+1);
assert(req->opcode == nvme_mi_mi_opcode_configuration_set);
assert((le32_to_cpu(req->cdw0) & 0xFF) == NVME_MI_CONFIG_AE);
assert(list->hdr.aeslver == 0);
int count = 0;
//Count how many events we want to act are in the expected state
for (int i = 0; i < 256; i++) {
if (expected_mask->enabled[i])
count++;
}
assert(list->hdr.numaes == count);
assert(list->hdr.aeslhl == sizeof(struct nvme_mi_aem_supported_list));
assert(list->hdr.aest == list->hdr.aeslhl +
count * sizeof(struct nvme_mi_aem_supported_item));
struct nvme_mi_aem_supported_item *item =
(struct nvme_mi_aem_supported_item *)(list+1);
//Check the items
for (int i = 0; i < 256; i++) {
if (expected_mask->enabled[i]) {
bool found = false;
for (int j = 0; j < count; j++) {
if (nvme_mi_aem_aesi_get_aesid(item[j].aesi) == i &&
nvme_mi_aem_aesi_get_aese(item[j].aesi) ==
expected_state->enabled[i]) {
found = true;
break;
}
}
assert(found);
}
}
}
static int aem_rcv_enable_fn(struct test_peer *peer, void *buf, size_t len, int sd)
{
struct aem_rcv_enable_fn_data *fn_data = peer->tx_data;
struct nvme_mi_mi_resp_hdr *tx_hdr = (struct nvme_mi_mi_resp_hdr *)peer->tx_buf;
/* set up a few default response fields; caller may have
* initialised the rest of the response
*/
test_peer.tx_buf[0] = NVME_MI_MSGTYPE_NVME;
test_peer.tx_buf[1] = test_peer.rx_buf[1] | (NVME_MI_ROR_RSP << 7);
tx_hdr->status = 0;
switch (fn_data->state) {
case AEM_ES_GET_ENABLED:
{
assert(sd == peer->sd[TEST_PEER_SD_COMMANDS_IDX]);
//First, we want to return some data about what is already enabled
struct nvme_mi_aem_supported_list_header *list_hdr =
(struct nvme_mi_aem_supported_list_header *)(tx_hdr+1);
if (fn_data->fc == AEM_FC_BAD_GET_CONFIG_HEADER_LEN)
list_hdr->aeslhl =
sizeof(struct nvme_mi_aem_supported_list_header) - 1;
else
list_hdr->aeslhl =
sizeof(struct nvme_mi_aem_supported_list_header);
list_hdr->aeslver = 0;
struct nvme_mi_aem_supported_item *item =
(struct nvme_mi_aem_supported_item *)(list_hdr+1);
int item_count = 0;
list_hdr->numaes = 0;
//Count how many events we want to act are enabled
for (int i = 0; i < 256; i++) {
if (fn_data->ep_enabled_map.enabled[i]) {
list_hdr->numaes++;
nvme_mi_aem_aesi_set_aesid(&item[item_count], i);
nvme_mi_aem_aesi_set_aee(&item[item_count], 1);
item[item_count].aesl =
sizeof(struct nvme_mi_aem_supported_item);
item_count++;
}
}
list_hdr->aest = list_hdr->aeslhl +
list_hdr->numaes * sizeof(struct nvme_mi_aem_supported_item);
if (fn_data->fc == AEM_FC_BAD_GET_CONFIG_TOTAL_LEN)
list_hdr->aest--;//Shrink
test_peer.tx_buf_len =
sizeof(struct nvme_mi_mi_resp_hdr) + list_hdr->aest;
if (fn_data->fc == AEM_FC_BAD_GET_CONFIG_BUFFER_LEN)
test_peer.tx_buf_len--;
test_set_tx_mic(&test_peer);
fn_data->state = AEM_ES_SET_TO_DISABLED;
break;
}
case AEM_ES_SET_TO_DISABLED:
{
assert(sd == peer->sd[TEST_PEER_SD_COMMANDS_IDX]);
struct nvme_mi_aem_enabled_map expected = {false};
//The items in the ep_enabled_map should get disabled
check_aem_sync_message(&fn_data->ep_enabled_map, &expected, fn_data);
//Need to queue a reasonable response with no OCC
struct nvme_mi_mi_resp_hdr *tx_hdr =
(struct nvme_mi_mi_resp_hdr *)test_peer.tx_buf;
struct nvme_mi_aem_occ_list_hdr *list_hdr =
(struct nvme_mi_aem_occ_list_hdr *)(tx_hdr+1);
list_hdr->aelver = 0;
list_hdr->aeolhl = sizeof(*list_hdr);
list_hdr->numaeo = 0;
nvme_mi_aem_aeolli_set_aeoltl(list_hdr, list_hdr->aeolhl);
test_peer.tx_buf_len = sizeof(struct nvme_mi_mi_resp_hdr) +
nvme_mi_aem_aeolli_get_aeoltl(list_hdr->aeolli);
test_set_tx_mic(&test_peer);
fn_data->state = AEM_ES_ENABLE_SET_ENABLED;
break;
}
case AEM_ES_ENABLE_SET_ENABLED:
assert(sd == peer->sd[TEST_PEER_SD_COMMANDS_IDX]);
//We should verify the right things are enabled
//The items in the host enable map should get enabled
check_aem_sync_message(&fn_data->host_enabled_map,
&fn_data->host_enabled_map, fn_data);
//Prepare an OCC list response
populate_tx_occ_list(false, fn_data, &fn_data->host_enabled_map);
fn_data->state = AEM_ES_PROCESS;
break;
case AEM_ES_PROCESS:
//This case is actually a TX without any request from the host
assert(sd == peer->sd[TEST_PEER_SD_AEMS_IDX]);
//Prepare an OCC list response
populate_tx_occ_list(true, fn_data, &fn_data->aem_during_process_map);
fn_data->state = AEM_ES_ACK_RESPONSE;
break;
case AEM_ES_ACK_RESPONSE:
assert(sd == peer->sd[TEST_PEER_SD_COMMANDS_IDX]);
//Prepare an OCC list response
populate_tx_occ_list(false, fn_data, &fn_data->ack_events_map);
fn_data->state = AEM_ES_ACK_RECEIVED;
break;
default:
assert(false);//Not expected
}
return 0;
}
enum nvme_mi_aem_handler_next_action aem_handler(nvme_mi_ep_t ep, size_t num_events, void *userdata)
{
struct aem_rcv_enable_fn_data *fn_data = userdata;
fn_data->callback_count++;
switch (fn_data->state) {
case AEM_ES_PROCESS:
case AEM_ES_ACK_RESPONSE:
case AEM_ES_ACK_RECEIVED:
{
//This means we just sent out first OCC data
int item_count = 0;
struct nvme_mi_aem_enabled_map *map;
//Count how many events we want to act are enabled
switch (fn_data->state) {
case AEM_ES_PROCESS:
map = &fn_data->host_enabled_map;
break;
case AEM_ES_ACK_RESPONSE:
map = &fn_data->aem_during_process_map;
break;
case AEM_ES_ACK_RECEIVED:
map = &fn_data->ack_events_map;
break;
default:
assert(false);
}
for (int i = 0; i < 256; i++)
if (map->enabled[i])
item_count++;
assert(num_events == item_count);
for (int i = 0; i < num_events; i++) {
struct nvme_mi_event *e = nvme_mi_aem_get_next_event(ep);
uint8_t idx = e->aeoi;
assert(fn_data->events[idx]);
assert(fn_data->host_enabled_map.enabled[idx]);
assert(fn_data->events[idx]->aeocidi == e->aeocidi);
assert(fn_data->events[idx]->aessi == e->aessi);
assert(fn_data->events[idx]->spec_info_len ==
e->spec_info_len);
assert(memcmp(fn_data->events[idx]->spec_info,
e->spec_info, e->spec_info_len) == 0);
assert(fn_data->events[idx]->vend_spec_info_len ==
e->vend_spec_info_len);
assert(memcmp(fn_data->events[idx]->vend_spec_info,
e->vend_spec_info, e->vend_spec_info_len) == 0);
}
assert(nvme_mi_aem_get_next_event(ep) == NULL);
break;
}
default:
assert(false);
}
return NVME_MI_AEM_HNA_ACK;
}
static void aem_test_aem_api_helper(nvme_mi_ep_t ep,
struct nvme_mi_aem_config *config, int expected_event_count)
{
struct aem_rcv_enable_fn_data *fn_data =
(struct aem_rcv_enable_fn_data *)test_peer.tx_data;
int rc = 0;
test_peer.tx_fn = aem_rcv_enable_fn;
//This should not work outside the handler
assert(nvme_mi_aem_get_next_event(ep) == NULL);
rc = nvme_mi_aem_enable(ep, config, test_peer.tx_data);
assert(rc == 0);
//This should not work outside the handler
assert(nvme_mi_aem_get_next_event(ep) == NULL);
rc = nvme_mi_aem_process(ep, test_peer.tx_data);
assert(rc == 0);
//One for initial enable, one for AEM. No ACK events
assert(fn_data->callback_count == expected_event_count);
//This should not work outside the handler
assert(nvme_mi_aem_get_next_event(ep) == NULL);
}
static void aem_test_aem_disable_helper(nvme_mi_ep_t ep,
struct aem_rcv_enable_fn_data *fn_data)
{
memcpy(&fn_data->ep_enabled_map, &fn_data->host_enabled_map,
sizeof(fn_data->host_enabled_map));
fn_data->state = AEM_ES_GET_ENABLED;//This is the flow for disabling
assert(nvme_mi_aem_disable(ep) == 0);
}
static void test_mi_aem_ep_based_failure_helper(nvme_mi_ep_t ep,
enum aem_failure_condition fc, struct test_peer *peer)
{
struct aem_rcv_enable_fn_data fn_data = {0};
struct nvme_mi_aem_config config = {0};
config.aemd = 1;
config.aerd = 2;
config.enabled_map.enabled[3] = true;
fn_data.aem_during_process_map.enabled[3] = true;
struct nvme_mi_event e = {0};
e.aeoi = 3;
e.spec_info_len = 0;
fn_data.events[3] = &e;
memcpy(&fn_data.host_enabled_map, &config.enabled_map, sizeof(config.enabled_map));
config.aem_handler = aem_handler;
peer->tx_data = (void *) &fn_data;
peer->tx_fn = aem_rcv_enable_fn;
fn_data.fc = fc;
switch (fc) {
case AEM_FC_BAD_GET_CONFIG_HEADER_LEN:
case AEM_FC_BAD_GET_CONFIG_TOTAL_LEN:
case AEM_FC_BAD_GET_CONFIG_BUFFER_LEN:
case AEM_FC_BAD_OCC_RSP_HDR_LEN_SYNC:
case AEM_FC_BAD_OCC_RSP_TOTAL_LEN_SYNC:
case AEM_FC_BAD_OCC_RSP_BUFFER_LEN_SYNC:
//These all should fail before processing
assert(nvme_mi_aem_enable(ep, &config, &fn_data) == -1);
assert(errno == EPROTO);
break;
case AEM_FC_BAD_OCC_RSP_HDR_LEN_AEM:
case AEM_FC_BAD_OCC_RSP_TOTAL_LEN_AEM:
case AEM_FC_BAD_OCC_RSP_BUFFER_LEN_AEM:
//These should fail on the processing
assert(nvme_mi_aem_enable(ep, &config, &fn_data) == 0);
assert(nvme_mi_aem_process(ep, &fn_data) == -1);
assert(errno == EPROTO);
break;
default:
assert(false);//Unexpected
}
}
/* test: Check validation of endpoint messages in various stages of aem handling */
static void test_mi_aem_ep_based_failure_conditions(nvme_mi_ep_t ep, struct test_peer *peer)
{
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_GET_CONFIG_HEADER_LEN, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_GET_CONFIG_TOTAL_LEN, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_GET_CONFIG_BUFFER_LEN, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_OCC_RSP_HDR_LEN_SYNC, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_OCC_RSP_HDR_LEN_AEM, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_OCC_RSP_TOTAL_LEN_SYNC, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_OCC_RSP_TOTAL_LEN_AEM, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_OCC_RSP_BUFFER_LEN_SYNC, peer);
test_mi_aem_ep_based_failure_helper(ep, AEM_FC_BAD_OCC_RSP_BUFFER_LEN_AEM, peer);
}
/* test: Check aem process logic when API used improperly */
static void test_mi_aem_enable_invalid_usage(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_aem_config config = {0};
config.aem_handler = aem_handler;
config.enabled_map.enabled[0] = false;
config.aemd = 1;
config.aerd = 2;
//Call with invalid config due to nothing enabled
assert(nvme_mi_aem_enable(ep, &config, NULL) == -1);
config.aem_handler = NULL;
config.enabled_map.enabled[0] = true;
//Call with invalid config due to no callback
assert(nvme_mi_aem_enable(ep, &config, NULL) == -1);
//Call with invalid config due to being NULL
assert(nvme_mi_aem_enable(ep, NULL, NULL) == -1);
config.aem_handler = aem_handler;
config.enabled_map.enabled[0] = true;
//Call with invalid endpoint
assert(nvme_mi_aem_enable(NULL, &config, NULL) == -1);
}
/* test: Check aem process logic when API used improperly */
static void test_mi_aem_process_invalid_usage(nvme_mi_ep_t ep, struct test_peer *peer)
{
//Without calling enable first
assert(nvme_mi_aem_process(ep, NULL) == -1);
//Call with invalid ep
assert(nvme_mi_aem_process(NULL, NULL) == -1);
}
/* test: Check aem disable logic when API used improperly */
static void test_mi_aem_disable_invalid_usage(nvme_mi_ep_t ep, struct test_peer *peer)
{
assert(nvme_mi_aem_disable(NULL) == -1);
}
static void test_mi_aem_get_enabled_invalid_usage(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct nvme_mi_aem_enabled_map map;
assert(nvme_mi_aem_get_enabled(ep, NULL) == -1);
assert(nvme_mi_aem_get_enabled(NULL, &map) == -1);
}
/* test: Check aem get enabled logic*/
static void test_mi_aem_get_enabled(nvme_mi_ep_t ep, struct test_peer *peer)
{
//When no events enabled on Endpoint
struct aem_rcv_enable_fn_data fn_data = {0};
struct nvme_mi_aem_enabled_map map;
test_peer.tx_fn = aem_rcv_enable_fn;
peer->tx_data = (void *) &fn_data;
fn_data.ep_enabled_map.enabled[8] = true;
fn_data.ep_enabled_map.enabled[20] = true;
fn_data.ep_enabled_map.enabled[51] = true;
fn_data.ep_enabled_map.enabled[255] = true;
assert(nvme_mi_aem_get_enabled(ep, &map) == 0);
assert(memcmp(&fn_data.ep_enabled_map, &map, sizeof(map)) == 0);
}
/* test: Check aem disable logic when called without an enable */
static void test_mi_aem_disable_no_enable(nvme_mi_ep_t ep, struct test_peer *peer)
{
//When no events enabled on Endpoint
struct aem_rcv_enable_fn_data fn_data = {0};
test_peer.tx_fn = aem_rcv_enable_fn;
peer->tx_data = (void *) &fn_data;
aem_test_aem_disable_helper(ep, &fn_data);
//When some events enabled on Endpoint
fn_data.ep_enabled_map.enabled[45] = true;
aem_test_aem_disable_helper(ep, &fn_data);
}
/* test: Check aem enable logic with ack carrying events */
static void test_mi_aem_api_w_ack_events(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct aem_rcv_enable_fn_data fn_data = {0};
struct nvme_mi_aem_config config = {0};
config.aemd = 1;
config.aerd = 2;
peer->tx_data = (void *) &fn_data;
config.aem_handler = aem_handler;
config.enabled_map.enabled[5] = true;
config.enabled_map.enabled[15] = true;
fn_data.aem_during_process_map.enabled[5] = true;
//No ack_events_map will be enabled in this test
fn_data.ack_events_map.enabled[15] = true;
//Will have EP have nothing enabled at start (ep_enabled_map)
struct nvme_mi_event ev5 = {0};
ev5.aeoi = 5;
ev5.aeocidi = 2;
ev5.aessi = 3;
struct nvme_mi_event ev15 = {0};
uint8_t ev15_spec[] = { 45, 15};
ev15.aeoi = 15;
ev15.aeocidi = 60213;
ev15.aessi = 200;
ev15.spec_info = ev15_spec;
ev15.spec_info_len = sizeof(ev15_spec);
fn_data.events[5] = &ev5;
fn_data.events[15] = &ev15;
memcpy(&fn_data.host_enabled_map, &config.enabled_map, sizeof(config.enabled_map));
aem_test_aem_api_helper(ep, &config, 3);
aem_test_aem_disable_helper(ep, &fn_data);
}
/* test: Check aem enable logic */
static void test_mi_aem_api_simple(nvme_mi_ep_t ep, struct test_peer *peer)
{
struct aem_rcv_enable_fn_data fn_data = {0};
struct nvme_mi_aem_config config = {0};
config.aemd = 1;
config.aerd = 2;
peer->tx_data = (void *) &fn_data;
config.aem_handler = aem_handler;
config.enabled_map.enabled[1] = true;
config.enabled_map.enabled[3] = true;
config.enabled_map.enabled[16] = true;
fn_data.aem_during_process_map.enabled[3] = true;
//No ack_events_map will be enabled in this test
fn_data.ep_enabled_map.enabled[3] = true;
fn_data.ep_enabled_map.enabled[20] = true;
fn_data.ep_enabled_map.enabled[200] = true;
struct nvme_mi_event ev1 = {0};
uint8_t ev1_spec[] = { 98, 56, 32, 12};
ev1.aeoi = 1;
ev1.aeocidi = 2;
ev1.aessi = 3;
ev1.spec_info = ev1_spec;
ev1.spec_info_len = sizeof(ev1_spec);
struct nvme_mi_event ev3 = {0};
uint8_t ev3_spec[] = { 45, 15};
ev3.aeoi = 3;
ev3.aeocidi = 4;
ev3.aessi = 5;
ev3.spec_info = ev3_spec;
ev3.spec_info_len = sizeof(ev3_spec);
struct nvme_mi_event ev16 = {0};
ev16.aeoi = 16;
ev16.aeocidi = 6;
ev16.aessi = 7;
fn_data.events[1] = &ev1;
fn_data.events[3] = &ev3;
fn_data.events[16] = &ev16;
memcpy(&fn_data.host_enabled_map, &config.enabled_map, sizeof(config.enabled_map));
aem_test_aem_api_helper(ep, &config, 2);
aem_test_aem_disable_helper(ep, &fn_data);
}
#define DEFINE_TEST(name) { #name, test_ ## name }
struct test {
const char *name;
void (*fn)(nvme_mi_ep_t, struct test_peer *);
} tests[] = {
DEFINE_TEST(rx_err),
DEFINE_TEST(tx_none),
DEFINE_TEST(tx_err),
DEFINE_TEST(tx_short),
DEFINE_TEST(read_mi_data),
DEFINE_TEST(poll_err),
DEFINE_TEST(mi_resp_err),
DEFINE_TEST(mi_resp_unaligned),
DEFINE_TEST(mi_resp_unaligned_expected),
DEFINE_TEST(admin_resp_err),
DEFINE_TEST(admin_resp_sizes),
DEFINE_TEST(poll_timeout_value),
DEFINE_TEST(poll_timeout),
DEFINE_TEST(mpr_mi),
DEFINE_TEST(mpr_admin),
DEFINE_TEST(mpr_admin_quirked),
DEFINE_TEST(mpr_timeouts),
DEFINE_TEST(mpr_timeout_clamp),
DEFINE_TEST(mpr_mprt_zero),
DEFINE_TEST(mi_aem_api_simple),
DEFINE_TEST(mi_aem_api_w_ack_events),
DEFINE_TEST(mi_aem_disable_no_enable),
DEFINE_TEST(mi_aem_process_invalid_usage),
DEFINE_TEST(mi_aem_enable_invalid_usage),
DEFINE_TEST(mi_aem_disable_invalid_usage),
DEFINE_TEST(mi_aem_get_enabled),
DEFINE_TEST(mi_aem_get_enabled_invalid_usage),
DEFINE_TEST(mi_aem_ep_based_failure_conditions),
};
static void run_test(struct test *test, FILE *logfd, nvme_mi_ep_t ep,
struct test_peer *peer)
{
printf("Running test %s...", test->name);
fflush(stdout);
test->fn(ep, peer);
printf(" OK\n");
test_print_log_buf(logfd);
}
int main(void)
{
nvme_root_t root;
nvme_mi_ep_t ep;
unsigned int i;
FILE *fd;
fd = test_setup_log();
__nvme_mi_mctp_set_ops(&ops);
root = nvme_mi_create_root(fd, DEFAULT_LOGLEVEL);
assert(root);
ep = nvme_mi_open_mctp(root, 0, 0);
assert(ep);
for (i = 0; i < ARRAY_SIZE(tests); i++) {
reset_test_peer();
run_test(&tests[i], fd, ep, &test_peer);
}
nvme_mi_close(ep);
nvme_mi_free_root(root);
test_close_log(fd);
return EXIT_SUCCESS;
}
|