File: lbppyr_mex.c

package info (click to toggle)
libocas 0.93-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze, wheezy
  • size: 4,392 kB
  • ctags: 298
  • sloc: ansic: 6,290; makefile: 76
file content (134 lines) | stat: -rw-r--r-- 3,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*=================================================================
 * LBPPYR computes LBP features on scale-pyramid of input image.
 * 
 * Synopsis:
 *  F = lbppyr_mat(I, P)
 * where
 *  I [H x W (uint8)] is input image.
 *  P [1 x 1 (double)] is height of the scale-pyramid.
 *  F [N x 1 (uint8)] LBP features stucked to a column vector. 
 *
 *=================================================================*/

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <mex.h>
#include <time.h>
#include <errno.h>

#define MIN(A,B) ((A) > (B) ? (B) : (A))
#define MAX(A,B) ((A) < (B) ? (B) : (A))
#define ABS(A) ((A) < 0 ? -(A) : (A))
#define INDEX(ROW,COL,NUM_ROWS) ((COL)*(NUM_ROWS)+(ROW))


/*======================================================================
  Main code plus interface to Matlab.
========================================================================*/

void mexFunction( int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[] )
{

  uint8_t *I, K;
  uint32_t *P;
  uint32_t *J;
  int w,h,x,y,i,j,N;
  int ww,hh; 
  uint32_t center;
  uint32_t offset;
  uint8_t pattern;

  if( nrhs != 2 )
    mexErrMsgTxt("Two input arguments required.\n\n"
                 "LBPPYR computes LBP features on scale-pyramid of input image.\n"
                 "Synopsis:\n"
                 "  F = lbppyr(I, P)\n"
                 "where\n"
                 "  I [H x W (uint8)] is input image.\n"
                 "  P [1 x 1 (double)] is height of the scale-pyramid.\n"
                 "  F [N x 1 (uint8)] LBP features stucked to a column vector. \n");

  I = (uint8_t*)mxGetPr(prhs[0]);
  K = (uint8_t)mxGetScalar(prhs[1]);

  h = mxGetM(prhs[0]);
  w = mxGetN(prhs[0]);

  /*  printf("h: %d\n", h);
  printf("w: %d\n", w);
  printf("K: %d\n", K);
  */

  /* count number of LBPs */
  for(ww=w, hh=h, N=0, i=0; i < K && MIN(ww,hh) >= 3; i++)
  {
    N += (ww-2)*(hh-2);

    if(ww % 2) ww--;
    if(hh % 2) hh--;
    ww = ww/2;
    hh = hh/2;
  }
  K = i;
  N = 256*N;
  
/*  printf("N: %d (=256*%d)\n", N,N/256);*/
/*  printf("K: %d\n",K);*/
  /*  printf("%d/%d = %d*%d + %d \n", b,a, a, b/a, b % a);*/
  
  plhs[0] = mxCreateNumericMatrix(N, 1, mxUINT32_CLASS, mxREAL);
  P = (uint32_t*)mxGetPr(plhs[0]);

  J = mxCalloc(h*w, sizeof(uint32_t));
  if(J ==NULL)
    mexErrMsgTxt("Not enough memory.");

  for(x=0; x < w; x++)
    for(y=0; y < h; y++)
      J[INDEX(y,x,h)] = I[INDEX(y,x,h)];
  
  for(ww=w, hh=h, i=0, offset = 0; i < K; i++)
  {
    for(x=1; x < ww-1; x++)
    {
      for(y=1; y< hh-1; y++)
      {
        pattern = 0;
        center = J[INDEX(y,x,h)];
        if(J[INDEX(y-1,x-1,h)] < center) pattern = pattern | 0x01;
        if(J[INDEX(y-1,x,h)] < center)   pattern = pattern | 0x02;
        if(J[INDEX(y-1,x+1,h)] < center) pattern = pattern | 0x04;
        if(J[INDEX(y,x-1,h)] < center)   pattern = pattern | 0x08;
        if(J[INDEX(y,x+1,h)] < center)   pattern = pattern | 0x10;
        if(J[INDEX(y+1,x-1,h)] < center) pattern = pattern | 0x20;
        if(J[INDEX(y+1,x,h)] < center)   pattern = pattern | 0x40;
        if(J[INDEX(y+1,x+1,h)] < center) pattern = pattern | 0x80;

        /*        P[cnt++] = pattern; */
        P[offset+pattern] = 1;
        offset += 256;
      }
    }

    if( i < K-1 )
    {
      if(ww % 2 == 1) ww--;
      if(hh % 2 == 1) hh--;

      ww = ww/2;
      for(x=0; x < ww; x++)
        for(j=0; j < hh; j++)
          J[INDEX(j,x,h)] = J[INDEX(j,2*x,h)] + J[INDEX(j,2*x+1,h)];

      hh = hh/2;
      for(y=0; y < hh; y++)
        for(j=0; j < ww; j++)
          J[INDEX(y,j,h)] = J[INDEX(2*y,j,h)] + J[INDEX(2*y+1,j,h)];
    }
    
  }
  
  return;
}