1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
% This script tests functionality of SVM solvers implemneted in the LIBOCAS.
%
% The script runs SVM solvers on example data (in ./data/) and compares
% the obtained results with the solutions stored in reference files.
%
% This script is useful to check potential bugs e.g. introduced when
% changing the library code.
%
% jump to root dir of libocas
cd(fileparts(which('svmocas')));
% two-class problem
TWO_CLASS_PROBLEM = './data/riply_trn.mat';
% two-class problem in SVM^light format
TWO_CLASS_PROBLEM_SVMLIGHT = './data/riply_trn.light';
% multi-class problem
MULTI_CLASS_PROBLEM = './data/example4_train.mat';
% multi-class problem in SVM^light format
MULTI_CLASS_PROBLEM_SVMLIGHT = './data/example4_train.light';
% gender classification (male vs. female) from face images
GENDER_IMAGE_DATABASE = './data/gender_images.mat';
% file to store/load reference solution
ReferenceFile = './data/reference_solution';
% if 1 save results to reference files else compares the results to the
% reference solutions;
CREATE_REFERNCE_FILES = 0;
%% Solver settings
opt.C = 1;
opt.Method = 1;
opt.TolRel = 0.01;
opt.TolAbs = 0;
opt.QPBound = 0;
opt.BufSize = 500;
opt.MaxTime = inf;
opt.X0 = 1;
opt.verb = 0;
%% run all solvers for different inputs
% SVMOCAS for dense double features
fprintf('SVMOCAS: training two-class SVM classifier from dense features in double precision ...');
data = load( TWO_CLASS_PROBLEM );
[svmocasResults.W,svmocasResults.W0,svmocasResults.stat] = ...
svmocas(data.X,opt.X0,data.y, opt.C,opt.Method,opt.TolRel,...
opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
% SVMOCAS for dense single prec. features
fprintf('SVMOCAS: training two-class SVM classifier from dense features in single precision ...');
data = load( TWO_CLASS_PROBLEM );
data.X = single(data.X);
[svmocasSingleResults.W,svmocasSingleResults.W0,svmocasSingleResults.stat] = ...
svmocas(data.X,opt.X0,data.y, opt.C,opt.Method,opt.TolRel,...
opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
% SVMOCAS for sparse double features
fprintf('SVMOCAS: training two-class SVM classifier from sparse features in double precision ...');
data = load( TWO_CLASS_PROBLEM );
data.X = sparse(data.X);
[svmocasSparseResults.W,svmocasSparseResults.W0,svmocasSparseResults.stat] = ...
svmocas(data.X,opt.X0,data.y, opt.C,opt.Method,opt.TolRel,...
opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
% SVMOCAS for INT8 features
fprintf('SVMOCAS: training two-class SVM classifier from dense int8 features ...');
data = load( TWO_CLASS_PROBLEM );
data.X = int8(100*data.X);
[svmocasInt8Results.W,svmocasInt8Results.W0,svmocasInt8Results.stat] = ...
svmocas(data.X,opt.X0,data.y, opt.C,opt.Method,opt.TolRel,...
opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
% SVMOCAS_LIGHT
fprintf('SVMOCAS_LIGHT: training two-class SVM classifier from examples stored in SVM^light file ...');
[svmocasLightResults.W,svmocasLightResults.W0,svmocasLightResults.stat] = ...
svmocas_light(TWO_CLASS_PROBLEM_SVMLIGHT,opt.X0, opt.C,opt.Method,opt.TolRel,...
opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
% SVMOCAS_LBP
fprintf('SVMOCAS_LBP: training two-class SVM classifier from LBP features computed on images ...');
data = load( GENDER_IMAGE_DATABASE );
HEIGHT_OF_LBP_PYRAMID = 4;
BASE_WINDOW_SIZE = [60 40];
numMaleImages = size(data.trn_male_images,2);
numFemaleImages = size(data.trn_male_images,2);
wins = [ [1:numMaleImages numMaleImages+[1:numFemaleImages]]; ...
repmat([20;15;0],1,numFemaleImages+numMaleImages)];
labels = [ones(1,numMaleImages) -ones(1,numFemaleImages)];
[svmocasLBPResults.W,svmocasLBPResults.W0,svmocasLBPResults.stat] = ...
svmocas_lbp([data.trn_male_images data.trn_female_images], data.IMAGE_SIZE,...
uint32(wins), BASE_WINDOW_SIZE, HEIGHT_OF_LBP_PYRAMID, opt.X0, labels, 0.001*opt.C, ...
opt.Method, opt.TolRel,opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
% MSVMOCAS
fprintf('MSVMOCAS: training multi-class SVM classifier from dense features in double precision ...');
data = load( MULTI_CLASS_PROBLEM );
[msvmocasResults.W,msvmocasResults.stat] = ...
msvmocas(data.X,data.y,opt.C,opt.Method,opt.TolRel,...
opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
% MSVMOCAS_LIGHT
fprintf('MSVMOCAS_LIGHT: training multi-class SVM classifier from examples stored in SVM^light file ...');
[msvmocasLightResults.W,msvmocasLightResults.stat] = ...
msvmocas_light(MULTI_CLASS_PROBLEM_SVMLIGHT,opt.C,opt.Method,opt.TolRel,...
opt.TolAbs,opt.QPBound,opt.BufSize,inf,opt.MaxTime,opt.verb);
fprintf('done.\n');
if CREATE_REFERNCE_FILES == 1,
%% save reference solutions to file
fprintf('Saving reference solutions to %s\n', ReferenceFile);
save(ReferenceFile,'svmocasResults','svmocasSparseResults','msvmocasResults',...
'svmocasInt8Results','svmocasLBPResults','svmocasSingleResults', ...
'svmocasLightResults','msvmocasLightResults');
else
%% compare obtained solutions to those stored in the reference file
ref = load(ReferenceFile);
test = [];
% SVMOCAS for dense double features
test(1).dif = sum(abs(svmocasResults.W - ref.svmocasResults.W) + ...
abs(svmocasResults.W0-ref.svmocasResults.W0));
test(1).name = 'sum(|W-ref.W| + |W0-ref.W0])';
test(2).dif = abs(svmocasResults.stat.Q_P - ref.svmocasResults.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal ';
test(3).dif = abs(svmocasResults.stat.Q_D - ref.svmocasResults.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nSVMOCAS for dense features in double precision:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name,test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
% SVMOCAS for dense single precision features
test(1).dif = sum(abs(svmocasSingleResults.W - ref.svmocasSingleResults.W) + ...
abs(svmocasSingleResults.W0-ref.svmocasSingleResults.W0));
test(1).name = 'sum(|W-ref.W| + |W0-ref.W0])';
test(2).dif = abs(svmocasSingleResults.stat.Q_P - ref.svmocasSingleResults.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal ';
test(3).dif = abs(svmocasSingleResults.stat.Q_D - ref.svmocasSingleResults.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nSVMOCAS for dense features in single precision:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name,test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
% SVMOCAS for sparse double features
test(1).dif = sum(abs(svmocasSparseResults.W - ref.svmocasSparseResults.W) + ...
abs(svmocasSparseResults.W0-ref.svmocasSparseResults.W0));
test(1).name = 'sum(|W-ref.W| + |W0-ref.W0])';
test(2).dif = abs(svmocasSparseResults.stat.Q_P - ref.svmocasSparseResults.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal ';
test(3).dif = abs(svmocasSparseResults.stat.Q_D - ref.svmocasSparseResults.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nSVMOCAS for sparse features in double precision:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name,test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
% SVMOCAS for dense INT8 features
test(1).dif = sum(abs(svmocasInt8Results.W - ref.svmocasInt8Results.W) + ...
abs(svmocasInt8Results.W0-ref.svmocasInt8Results.W0));
test(1).name = 'sum(|W-ref.W| + |W0-ref.W0])';
test(2).dif = abs(svmocasInt8Results.stat.Q_P - ref.svmocasInt8Results.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal ';
test(3).dif = abs(svmocasInt8Results.stat.Q_D - ref.svmocasInt8Results.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nSVMOCAS for dense int8 features:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name,test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
% SVMOCAS_LIGHT
test(1).dif = sum(abs(svmocasLightResults.W - ref.svmocasLightResults.W) + ...
abs(svmocasLightResults.W0-ref.svmocasLightResults.W0));
test(1).name = 'sum(|W-ref.W| + |W0-ref.W0])';
test(2).dif = abs(svmocasLightResults.stat.Q_P - ref.svmocasLightResults.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal ';
test(3).dif = abs(svmocasLightResults.stat.Q_D - ref.svmocasLightResults.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nSVMOCAS_LIGHT:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name,test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
% SVMOCAS_LBP
test(1).dif = sum(abs(svmocasLBPResults.W - ref.svmocasLBPResults.W) + ...
abs(svmocasLBPResults.W0-ref.svmocasLBPResults.W0));
test(1).name = 'sum(|W-ref.W| + |W0-ref.W0])';
test(2).dif = abs(svmocasLBPResults.stat.Q_P - ref.svmocasLBPResults.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal ';
test(3).dif = abs(svmocasLBPResults.stat.Q_D - ref.svmocasLBPResults.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nSVMOCAS_LBP:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name,test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
% MSVMOCAS
test(1).dif = sum(sum(abs(msvmocasResults.W - ref.msvmocasResults.W)));
test(1).name = 'sum(|W-ref.W|) ';
test(2).dif = abs(msvmocasResults.stat.Q_P - ref.msvmocasResults.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal';
test(3).dif = abs(msvmocasResults.stat.Q_D - ref.msvmocasResults.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nMSVMOCAS:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name, test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
% MSVMOCAS_LIGHT
test(1).dif = sum(sum(abs(msvmocasLightResults.W - ref.msvmocasLightResults.W)));
test(1).name = 'sum(|W-ref.W|) ';
test(2).dif = abs(msvmocasLightResults.stat.Q_P - ref.msvmocasLightResults.stat.Q_P);
test(2).name = 'PrimalVal - ref.PrimalVal';
test(3).dif = abs(msvmocasLightResults.stat.Q_D - ref.msvmocasLightResults.stat.Q_D);
test(3).name = 'DualVal - ref.DualVal ';
fprintf('\nMSVMOCAS_LIGHT:\n');
for i=1:length(test)
fprintf(' %s = %.20f ... ',test(i).name, test(i).dif);
if test(i).dif == 0
fprintf('SOLUTIONS EQUAL - OK\n');
else
fprintf('SOLUTION IS DIFFERENT!!!\n');
end
end
end
% EOF
|