1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
/*=================================================================================
* SVMOCAS_LBP Train linear SVM classifier for images represented by LBP features.
*
* Synopsis:
* [W,W0,stat]= svmocas_lbp(Images,imSize,Wins,winSize,height_of_pyramid,X0,y,C,Method,TolRel,TolAbs,QPBound,BufSize,MaxTime,verb)
*
* Input:
* Images [(im_H*im_W) x nImages (uint8)]
* imSize [2 x 1 (uint32)] imSize = [im_H im_W]
* Wins [4 x nExamples (uint32)] [image_idx; top_left_col; top_left_row; mirror]
* winSize [2 x 1 (uint32)] [win_H win_W]
* height_of_pyramid [1 x 1 (double)]
* X0 [1 x 1 (double)]
* y [nExamples x 1 (double)] +1/-1
* C [1 x 1 (double)]
* Method [1x1 (double)] 0 (BMRM) or 1 (OCAS)
* TolRel [1x1 (double)]
* TolAbs [1x1 (double)]
* QPBound [1x1 (double)]
* BufSize [1x1 (double)]
* MaxTime [1x1 (double)]
* verb [1x1 (bouble)]
* Output:
* W [nDim x 1] Parameter vector
* W0 [1x1] Bias term
* stat [struct]
*
* Copyright (C) 2008, 2009, 2010 Vojtech Franc, xfrancv@cmp.felk.cvut.cz
* Soeren Sonnenburg, soeren.sonnenburg@first.fraunhofer.de
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation;
*======================================================================================*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <mex.h>
#include "libocas.h"
#include "ocas_lbp_helper.h"
#include "liblbp.h"
#define DEFAULT_METHOD 1
#define DEFAULT_TOLREL 0.01
#define DEFAULT_TOLABS 0.0
#define DEFAULT_QPVALUE 0.0
#define DEFAULT_BUFSIZE 500
#define DEFAULT_MAXTIME mxGetInf()
#define DEFAULT_VERB 1
/*======================================================================
Main code plus interface to Matlab.
========================================================================*/
void mexFunction( int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[] )
{
double C, TolRel, TolAbs, QPBound, trn_err, MaxTime;
double *vec_C;
uint32_t num_of_Cs;
uint32_t i, j, BufSize;
uint16_t Method;
int verb;
ocas_return_value_T ocas;
double *tmp;
/* timing variables */
double init_time;
double total_time;
total_time = get_time();
init_time = total_time;
if(nrhs < 8 || nrhs > 16)
mexErrMsgTxt("Improper number of input arguments.\n\n"
"SVMOCAS_LBP train linear SVM classifier for images prepresented by LBP features. \n\n"
"Synopsis:\n"
" [W,W0,stat]= svmocas_lbp(Images,imSize,Wins,winSize,height_of_pyramid,\n"
" X0,y,C,Method,TolRel,TolAbs,QPBound,BufSize,nExamples,MaxTime,verb) \n\n"
"Input: \n"
" Images [(im_H*im_W) x nImages (uint8)]\n"
" imSize [2 x 1 (double)] imSize = [im_H im_W]\n"
" Wins [4 x nExamples (uint32)] [img_idx; topleft_col; topleft_row; mirror] 1-based\n"
" winSize [2 x 1 (double)] [win_H win_W]\n"
" height_of_pyramid [1 x 1 (double)]\n"
" X0 [1 x 1 (double)]\n"
" y [nExamples x 1 (double)] +1 or -1\n"
" C [1 x 1 (double)]\n"
" Method [1x1 (double)] 0 for BMRM; 1 for OCAS \n"
" TolRel [1x1 (double)]\n"
" TolAbs [1x1 (double)]\n"
" QPBound [1x1 (double)]\n"
" BufSize [1x1 (double)]\n"
" nExamples [1x1 (double) number of examples to use; (inf mens use all available)\n"
" MaxTime [1x1 (double)]\n"
" verb [1x1 (bouble)]\n\n"
"Output:\n"
" W [nDim x 1] Parameter vector\n"
" W0 [1x1] Bias term\n"
" stat [struct] \n");
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15*/
/* [W,W0,stat]= svmocas_lbp(Images,imSize,Wins,winSize,nPyramids,X0,y,C,Method,TolRel,TolAbs,QPBound,BufSize,nExamples,MaxTime,verb) */
if(nrhs >= 16)
verb = (int)mxGetScalar(prhs[15]);
else
verb = DEFAULT_VERB;
Images = (uint8_t*)mxGetPr(prhs[0]);
nImages = mxGetN(prhs[0]);
tmp = (double*)mxGetPr(prhs[1]);
im_H = (uint32_t)tmp[0];
im_W = (uint32_t)tmp[1];
/* mexPrintf("im_h=%d im_W=%d \n", im_H, im_W);*/
if(mxGetM(prhs[0]) != im_H*im_W)
mexErrMsgTxt("Dimension of Images does not match to im_H*im_W.");
Wins = (uint32_t*)mxGetPr(prhs[2]);
tmp = (double*)mxGetPr(prhs[3]);
win_H = (uint32_t)tmp[0];
win_W = (uint32_t)tmp[1];
nPyramids = (uint32_t)mxGetScalar(prhs[4]);
/* nDim = lbppyr_get_dim(win_H,win_W,nPyramids);*/
nDim = liblbp_pyr_get_dim(win_H,win_W,nPyramids);
croped_window = (uint32_t*)mxCalloc(win_H*win_W,sizeof(uint32_t));
if(croped_window == NULL)
mexErrMsgTxt("Not enough memory for croped_window.");
X0 = mxGetScalar(prhs[5]);
data_y = (double*)mxGetPr(prhs[6]);
nData = LIBOCAS_MAX(mxGetM(prhs[6]),mxGetN(prhs[6]));
if(nData != mxGetN(prhs[2]))
mexErrMsgTxt("Dimension missmatch betwenn Wins and y.");
if(verb)
{
mexPrintf("Input data:\n"
" # of images : %d\n"
" image height : %d\n"
" image width : %d\n",
nImages, im_H, im_W);
mexPrintf("Feature represenation:\n"
" base window height : %d\n"
" base window width : %d\n"
" nPyramids : %d\n"
" # of virtual examples : %d\n"
" # of features per example : %d\n",
win_H, win_W, nPyramids, nData, nDim);
}
num_of_Cs = LIBOCAS_MAX(mxGetN(prhs[7]),mxGetM(prhs[7]));
if(num_of_Cs == 1)
{
C = (double)mxGetScalar(prhs[7]);
}
else
{
/* if(nData != num_of_Cs) */
/* mexErrMsgTxt("The number of examples does not much the length of the vector C.");*/
mexErrMsgTxt("The argument C must be a scalar of type double.");
/* vec_C = (double*)mxGetPr(prhs[7]);*/
}
if(nrhs >= 9)
Method = (uint32_t)mxGetScalar(prhs[8]);
else
Method = DEFAULT_METHOD;
if(nrhs >= 10)
TolRel = (double)mxGetScalar(prhs[9]);
else
TolRel = DEFAULT_TOLREL;
if(nrhs >= 11)
TolAbs = (double)mxGetScalar(prhs[10]);
else
TolAbs = DEFAULT_TOLABS;
if(nrhs >= 12)
QPBound = (double)mxGetScalar(prhs[11]);
else
QPBound = DEFAULT_QPVALUE;
if(nrhs >= 13)
BufSize = (uint32_t)mxGetScalar(prhs[12]);
else
BufSize = DEFAULT_BUFSIZE;
if(num_of_Cs > 1 && num_of_Cs < nData)
mexErrMsgTxt("Length of the vector C less than the number of examples.");
if(nrhs >= 14 && !mxIsInf(mxGetScalar(prhs[13])))
{
if((uint32_t)mxGetScalar(prhs[13]) < 0 || (uint32_t)mxGetScalar(prhs[13]) > nData)
mexErrMsgTxt("Improper number of examples; must be > 0 and < max number of virtual example.\n");
nData = (uint32_t)mxGetScalar(prhs[13]);
mexPrintf(" # of examples set to : %d\n",nData);
}
if(nrhs >= 15)
MaxTime = (double)mxGetScalar(prhs[14]);
else
MaxTime = DEFAULT_MAXTIME;
/*----------------------------------------------------------------
Print setting
-------------------------------------------------------------------*/
if(verb)
{
mexPrintf("SVM setting:\n");
/* if( num_of_Cs == 1)*/
/* mexPrintf(" C : %f\n", C);*/
/* else*/
/* mexPrintf(" C : different for each example\n");*/
mexPrintf(" C : %f\n"
" bias : %.0f\n"
" # of examples : %d\n"
" solver : %d\n"
" cache size : %d\n"
" TolAbs : %f\n"
" TolRel : %f\n"
" QPValue : %f\n"
" MaxTime : %f [s]\n"
" verb : %d\n",
C, X0, nData, Method,BufSize,TolAbs,TolRel, QPBound, MaxTime, verb);
}
/* learned weight vector */
plhs[0] = (mxArray*)mxCreateDoubleMatrix(nDim,1,mxREAL);
W = (double*)mxGetPr(plhs[0]);
if(W == NULL) mexErrMsgTxt("Not enough memory for vector W.");
oldW = (double*)mxCalloc(nDim,sizeof(double));
if(oldW == NULL) mexErrMsgTxt("Not enough memory for vector oldW.");
W0 = 0;
oldW0 = 0;
A0 = mxCalloc(BufSize,sizeof(A0[0]));
if(A0 == NULL) mexErrMsgTxt("Not enough memory for vector A0.");
/* allocate buffer for computing cutting plane */
/* new_a = (double*)mxCalloc(nDim,sizeof(double));*/
new_a = mxCalloc(nDim,sizeof(new_a[0]));
if(new_a == NULL)
mexErrMsgTxt("Not enough memory for auxciliary cutting plane buffer new_a.");
/* if(num_of_Cs > 1)*/
/* {*/
/* for(i=0; i < nData; i++) */
/* data_y[i] = data_y[i]*vec_C[i];*/
/* }*/
/* !!!!!!!!!!!!
ptr = mxGetPr(data_X);
for(i=0; i < nData; i++) {
for(j=0; j < nDim; j++ ) {
ptr[LIBOCAS_INDEX(j,i,nDim)] = ptr[LIBOCAS_INDEX(j,i,nDim)]*data_y[i];
}
}
*/
/* init cutting plane buffer */
/* full_A = mxCalloc(BufSize*nDim,sizeof(double));*/
full_A = mxCalloc(BufSize*nDim,sizeof(full_A[0]));
if( full_A == NULL )
mexErrMsgTxt("Not enough memory for cutting plane buffer full_A.");
if(verb)
{
mexPrintf("Memory occupancy:\n"
" raw images : %.2f MB\n"
" CP buffer : %.2f MB\n"
" parameter vector W : %.2f MB\n",
(double)nImages*im_H*im_W/(1024*1024),
(double)sizeof(full_A[0])*BufSize*nDim/(1024*1024),
(double)sizeof(W[0])*nDim/(1024*1024));
}
init_time=get_time()-init_time;
if(verb)
{
mexPrintf("Starting optimization:\n");
/* if(num_of_Cs == 1)*/
ocas = svm_ocas_solver( C, nData, TolRel, TolAbs, QPBound, MaxTime,BufSize, Method,
&full_compute_W, &full_update_W, &full_add_new_cut,
&full_compute_output, &qsort_data, &ocas_print, 0);
/* else*/
/* ocas = svm_ocas_solver_difC( vec_C, nData, TolRel, TolAbs, QPBound, MaxTime,BufSize, Method, */
/* &full_compute_W, &full_update_W, &full_add_new_cut, */
/* &full_compute_output, &qsort_data, &ocas_print, 0);*/
}
else
{
/* if(num_of_Cs == 1)*/
ocas = svm_ocas_solver( C, nData, TolRel, TolAbs, QPBound, MaxTime,BufSize, Method,
&full_compute_W, &full_update_W, &full_add_new_cut,
&full_compute_output, &qsort_data, &ocas_print_null, 0);
/* else*/
/* ocas = svm_ocas_solver_difC( vec_C, nData, TolRel, TolAbs, QPBound, MaxTime,BufSize, Method, */
/* &full_compute_W, &full_update_W, &full_add_new_cut, */
/* &full_compute_output, &qsort_data, &ocas_print_null, 0);*/
}
if(verb)
{
mexPrintf("Stopping condition: ");
switch( ocas.exitflag )
{
case 1: mexPrintf("1-Q_D/Q_P <= TolRel(=%f) satisfied.\n", TolRel); break;
case 2: mexPrintf("Q_P-Q_D <= TolAbs(=%f) satisfied.\n", TolAbs); break;
case 3: mexPrintf("Q_P <= QPBound(=%f) satisfied.\n", QPBound); break;
case 4: mexPrintf("Optimization time (=%f) >= MaxTime(=%f).\n", ocas.ocas_time, MaxTime); break;
case -1: mexPrintf("Has not converged!\n" ); break;
case -2: mexPrintf("Not enough memory for the solver.\n" ); break;
}
}
total_time=get_time()-total_time;
if(verb)
{
mexPrintf("Timing statistics:\n"
" init_time : %f[s]\n"
" qp_solver_time : %f[s]\n"
" sort_time : %f[s]\n"
" output_time : %f[s]\n"
" add_time : %f[s]\n"
" w_time : %f[s]\n"
" print_time : %f[s]\n"
" ocas_time : %f[s]\n"
" total_time : %f[s]\n",
init_time, ocas.qp_solver_time, ocas.sort_time, ocas.output_time,
ocas.add_time, ocas.w_time, ocas.print_time, ocas.ocas_time, total_time);
mexPrintf("Training error: %.4f%%\n", 100*(double)ocas.trn_err/(double)nData);
}
/* if(num_of_Cs > 1)*/
/* {*/
/* for(i=0; i < nData; i++) */
/* data_y[i] = data_y[i]/vec_C[i];*/
/* }*/
plhs[1] = mxCreateDoubleScalar( W0 );
const char *field_names[] = {"nTrnErrors","Q_P","Q_D","nIter","nCutPlanes","exitflag",
"init_time","output_time","sort_time","qp_solver_time","add_time",
"w_time","print_time","ocas_time","total_time"};
mwSize dims[2] = {1,1};
plhs[2] = mxCreateStructArray(2, dims, (sizeof(field_names)/sizeof(*field_names)), field_names);
mxSetField(plhs[2],0,"nIter",mxCreateDoubleScalar((double)ocas.nIter));
mxSetField(plhs[2],0,"nCutPlanes",mxCreateDoubleScalar((double)ocas.nCutPlanes));
mxSetField(plhs[2],0,"nTrnErrors",mxCreateDoubleScalar(ocas.trn_err));
mxSetField(plhs[2],0,"Q_P",mxCreateDoubleScalar(ocas.Q_P));
mxSetField(plhs[2],0,"Q_D",mxCreateDoubleScalar(ocas.Q_D));
mxSetField(plhs[2],0,"init_time",mxCreateDoubleScalar(init_time));
mxSetField(plhs[2],0,"output_time",mxCreateDoubleScalar(ocas.output_time));
mxSetField(plhs[2],0,"sort_time",mxCreateDoubleScalar(ocas.sort_time));
mxSetField(plhs[2],0,"qp_solver_time",mxCreateDoubleScalar(ocas.qp_solver_time));
mxSetField(plhs[2],0,"add_time",mxCreateDoubleScalar(ocas.add_time));
mxSetField(plhs[2],0,"w_time",mxCreateDoubleScalar(ocas.w_time));
mxSetField(plhs[2],0,"print_time",mxCreateDoubleScalar(ocas.print_time));
mxSetField(plhs[2],0,"ocas_time",mxCreateDoubleScalar(ocas.ocas_time));
mxSetField(plhs[2],0,"total_time",mxCreateDoubleScalar(total_time));
mxSetField(plhs[2],0,"exitflag",mxCreateDoubleScalar((double)ocas.exitflag));
return;
}
|