1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
// file : odb/details/win32/tls.cxx
// copyright : Copyright (c) 2009-2015 Code Synthesis Tools CC
// license : GNU GPL v2; see accompanying LICENSE file
#include <odb/details/win32/windows.hxx>
#include <winerror.h> // ERROR_INVALID_INDEX
#include <new>
#include <cstddef> // std::size_t
#include <odb/details/win32/lock.hxx>
#include <odb/details/win32/tls.hxx>
#include <odb/details/win32/tls-init.hxx>
#include <odb/details/win32/exceptions.hxx>
#ifdef _MSC_VER
# pragma warning (disable:4200) // zero-sized array in struct
#endif
using namespace std;
namespace odb
{
namespace details
{
typedef void (*dtor_func) (void*);
struct entry
{
void* value;
dtor_func dtor;
};
struct thread_data
{
size_t size;
size_t capacity;
entry entries[0];
};
struct process_data
{
size_t size;
size_t capacity;
dtor_func dtors[0];
};
static DWORD index_ = TLS_OUT_OF_INDEXES;
static CRITICAL_SECTION cs_;
static process_data* proc_data_;
const size_t init_capacity = 4;
void
tls_process_start ()
{
index_ = TlsAlloc ();
if (index_ == TLS_OUT_OF_INDEXES)
throw win32_exception ();
InitializeCriticalSection (&cs_);
process_data* pd (
static_cast<process_data*> (
operator new (
sizeof (process_data) + sizeof (dtor_func) * init_capacity)));
pd->size = 0;
pd->capacity = init_capacity;
memset (pd->dtors, 0, sizeof (dtor_func) * init_capacity);
proc_data_ = pd;
}
void
tls_process_end (bool)
{
operator delete (proc_data_);
DeleteCriticalSection (&cs_);
if (index_ != TLS_OUT_OF_INDEXES)
{
if (!TlsFree (index_))
throw win32_exception ();
}
}
void
tls_thread_end ()
{
if (thread_data* d = static_cast<thread_data*> (TlsGetValue (index_)))
{
// Call destructors. Implement the pthread semantics in that the
// destructors are called until all the values become 0.
//
for (bool pass (true); pass;)
{
pass = false;
for (size_t i (0); i < d->size; ++i)
{
if (d->entries[i].dtor != 0 && d->entries[i].value != 0)
{
pass = true;
void* tmp (d->entries[i].value);
d->entries[i].value = 0;
d->entries[i].dtor (tmp);
}
}
}
operator delete (d);
}
}
//
// tls_common
//
std::size_t tls_common::
_allocate (dtor_func dtor)
{
win32_lock l (cs_);
size_t n (proc_data_->size);
size_t c (proc_data_->capacity);
if (n == c)
{
c *= 2;
// Try to do "atomic" switch-over so that proc_data_ always points
// to memory that can be freed even if this thread is killed in the
// middle.
//
process_data* pd (
static_cast<process_data*> (
operator new (sizeof (process_data) + sizeof (dtor_func) * c)));
memcpy (pd->dtors, proc_data_->dtors, n * sizeof (dtor_func));
memset (pd->dtors + n, 0, sizeof (dtor_func) * (c - n));
pd->size = n;
pd->capacity = c;
process_data* old (proc_data_);
proc_data_ = pd;
operator delete (old);
}
proc_data_->dtors[n] = dtor;
return proc_data_->size++;
}
void* tls_common::
_get (std::size_t key)
{
if (thread_data* d = static_cast<thread_data*> (TlsGetValue (index_)))
{
if (key < d->size)
return d->entries[key].value;
}
// Check if this key is valid.
//
win32_lock l (cs_);
if (key < proc_data_->size)
return 0;
throw win32_exception (ERROR_INVALID_INDEX);
}
void tls_common::
_set (std::size_t key, void* value)
{
thread_data* d (static_cast<thread_data*> (TlsGetValue (index_)));
if (d != 0 && key < d->capacity)
{
if (key >= d->size)
{
// Check if this key is valid. If so then we need to copy
// dtors for new slots.
//
win32_lock l (cs_);
size_t n (proc_data_->size);
if (key >= n)
throw win32_exception (ERROR_INVALID_INDEX);
for (size_t i (d->size); i < n; ++i)
d->entries[i].dtor = proc_data_->dtors[i];
d->size = n;
}
d->entries[key].value = value;
}
else
{
// Check if this key is valid. If so then we need to (re)-allocate
// our storage.
//
win32_lock l (cs_);
size_t n (proc_data_->size);
if (key >= n)
throw win32_exception (ERROR_INVALID_INDEX);
size_t c (proc_data_->capacity);
thread_data* nd (
static_cast<thread_data*> (
operator new (sizeof (thread_data) + sizeof (entry) * c)));
size_t on (d == 0 ? 0 : d->size);
// Copy over the data.
//
if (on != 0)
memcpy (nd->entries, d->entries, sizeof (entry) * on);
// Zero out the rest.
//
memset (nd->entries + on, 0, sizeof (entry) * (c - on));
// Assign destructors to new slots [on, n).
//
for (size_t i (on); i < n; ++i)
nd->entries[i].dtor = proc_data_->dtors[i];
nd->size = n;
nd->capacity = c;
operator delete (d);
TlsSetValue (index_, nd);
nd->entries[key].value = value;
}
}
}
}
|