1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
// file : odb/transaction.cxx
// copyright : Copyright (c) 2009-2015 Code Synthesis Tools CC
// license : GNU GPL v2; see accompanying LICENSE file
#include <odb/transaction.hxx>
#include <odb/exceptions.hxx>
#include <odb/details/tls.hxx>
using namespace std;
namespace odb
{
using namespace details;
//
// transaction
//
static ODB_TLS_POINTER (transaction) current_transaction;
transaction::
~transaction ()
{
if (!finalized_)
try {rollback ();} catch (...) {}
}
void transaction::
reset (transaction_impl* impl, bool make_current)
{
details::unique_ptr<transaction_impl> i (impl);
if (!finalized_)
rollback ();
impl_.reset (i.release ());
if (make_current && tls_get (current_transaction) != 0)
throw already_in_transaction ();
impl_->start ();
finalized_ = false;
if (make_current)
tls_set (current_transaction, this);
}
bool transaction::
has_current ()
{
return tls_get (current_transaction) != 0;
}
transaction& transaction::
current ()
{
transaction* cur (tls_get (current_transaction));
if (cur == 0)
throw not_in_transaction ();
return *cur;
}
void transaction::
current (transaction& t)
{
tls_set (current_transaction, &t);
}
void transaction::
reset_current ()
{
transaction* t (0);
tls_set (current_transaction, t);
}
struct rollback_guard
{
rollback_guard (transaction& t): t_ (&t) {}
~rollback_guard ()
{if (t_ != 0) t_->callback_call (transaction::event_rollback);}
void release () {t_ = 0;}
private:
transaction* t_;
};
void transaction::
commit ()
{
if (finalized_)
throw transaction_already_finalized ();
finalized_ = true;
rollback_guard rg (*this);
impl_->connection ().transaction_tracer_ = 0;
if (tls_get (current_transaction) == this)
{
transaction* t (0);
tls_set (current_transaction, t);
}
impl_->commit ();
rg.release ();
if (callback_count_ != 0)
callback_call (event_commit);
}
void transaction::
rollback ()
{
if (finalized_)
throw transaction_already_finalized ();
finalized_ = true;
rollback_guard rg (*this);
impl_->connection ().transaction_tracer_ = 0;
if (tls_get (current_transaction) == this)
{
transaction* t (0);
tls_set (current_transaction, t);
}
impl_->rollback ();
rg.release ();
if (callback_count_ != 0)
callback_call (event_rollback);
}
void transaction::
callback_call (unsigned short event)
{
size_t stack_count (callback_count_ < stack_callback_count
? callback_count_ : stack_callback_count);
size_t dyn_count (callback_count_ - stack_count);
// We need to be careful with the situation where a callback
// throws and we neither call the rest of the callbacks nor
// reset their states. To make sure this doesn't happen, we
// do a first pass and reset all the states.
//
for (size_t i (0); i < stack_count; ++i)
{
callback_data& d (stack_callbacks_[i]);
if (d.event != 0 && d.state != 0)
*d.state = 0;
}
for (size_t i (0); i < dyn_count; ++i)
{
callback_data& d (dyn_callbacks_[i]);
if (d.event != 0 && d.state != 0)
*d.state = 0;
}
// Now do the actual calls.
//
for (size_t i (0); i < stack_count; ++i)
{
callback_data& d (stack_callbacks_[i]);
if (d.event & event)
d.func (event, d.key, d.data);
}
for (size_t i (0); i < dyn_count; ++i)
{
callback_data& d (dyn_callbacks_[i]);
if (d.event & event)
d.func (event, d.key, d.data);
}
// Clean things up in case this instance is going to be reused.
//
if (dyn_count != 0)
dyn_callbacks_.clear ();
free_callback_ = max_callback_count;
callback_count_ = 0;
}
void transaction::
callback_register (callback_type func,
void* key,
unsigned short event,
unsigned long long data,
transaction** state)
{
callback_data* s;
// If we have a free slot, use it.
//
if (free_callback_ != max_callback_count)
{
s = (free_callback_ < stack_callback_count)
? stack_callbacks_ + free_callback_
: &dyn_callbacks_[free_callback_ - stack_callback_count];
free_callback_ = reinterpret_cast<size_t> (s->key);
}
// If we have space in the stack, grab that.
//
else if (callback_count_ < stack_callback_count)
{
s = stack_callbacks_ + callback_count_;
callback_count_++;
}
// Otherwise use the dynamic storage.
//
else
{
dyn_callbacks_.push_back (callback_data ());
s = &dyn_callbacks_.back ();
callback_count_++;
}
s->func = func;
s->key = key;
s->event = event;
s->data = data;
s->state = state;
}
size_t transaction::
callback_find (void* key)
{
if (callback_count_ == 0)
return 0;
size_t stack_count;
// See if this is the last slot registered. This will be a fast path if,
// for example, things are going to be unregistered from destructors.
//
if (callback_count_ <= stack_callback_count)
{
if (stack_callbacks_[callback_count_ - 1].key == key)
return callback_count_ - 1;
stack_count = callback_count_;
}
else
{
if (dyn_callbacks_.back ().key == key)
return callback_count_ - 1;
stack_count = stack_callback_count;
}
// Otherwise do a linear search.
//
for (size_t i (0); i < stack_count; ++i)
if (stack_callbacks_[i].key == key)
return i;
for (size_t i (0), dyn_count (callback_count_ - stack_count);
i < dyn_count; ++i)
if (dyn_callbacks_[i].key == key)
return i + stack_callback_count;
return callback_count_;
}
void transaction::
callback_unregister (void* key)
{
size_t i (callback_find (key));
// It is ok for this function not to find the key.
//
if (i == callback_count_)
return;
// See if this is the last slot registered.
//
if (i == callback_count_ - 1)
{
if (i >= stack_callback_count)
dyn_callbacks_.pop_back ();
callback_count_--;
}
else
{
callback_data& d (
i < stack_callback_count
? stack_callbacks_[i]
: dyn_callbacks_[i - stack_callback_count]);
// Add to the free list.
//
d.event = 0;
d.key = reinterpret_cast<void*> (free_callback_);
free_callback_ = i;
}
}
void transaction::
callback_update (void* key,
unsigned short event,
unsigned long long data,
transaction** state)
{
size_t i (callback_find (key));
// It is ok for this function not to find the key.
//
if (i == callback_count_)
return;
callback_data& d (
i < stack_callback_count
? stack_callbacks_[i]
: dyn_callbacks_[i - stack_callback_count]);
d.event = event;
d.data = data;
d.state = state;
}
//
// transaction_impl
//
transaction_impl::
~transaction_impl ()
{
}
}
|