1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
|
/*
* Copyright: (C) 2000 Julius O. Smith
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Julius O. Smith jos@ccrma.stanford.edu
*
*/
/* This code was modified by Bruce Forsberg (forsberg@tns.net) to make it
into a C++ class
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "aflibConverter.h"
#include "aflibConverterLargeFilter.h"
#include "aflibConverterSmallFilter.h"
#include "../error_op.h" // inserted by OnePrint
//#include "aflibDebug.h"
#if (!defined(TRUE) || !defined(FALSE))
# define TRUE 1
# define FALSE 0
#endif
/*
* The configuration constants below govern
* the number of bits in the input sample and filter coefficients, the
* number of bits to the right of the binary-point for fixed-point math, etc.
*/
/* Conversion constants */
#define Nhc 8
#define Na 7
#define Np (Nhc+Na)
#define Npc (1<<Nhc)
#define Amask ((1<<Na)-1)
#define Pmask ((1<<Np)-1)
#define Nh 16
#define Nb 16
#define Nhxn 14
#define Nhg (Nh-Nhxn)
#define NLpScl 13
/* Description of constants:
*
* Npc - is the number of look-up values available for the lowpass filter
* between the beginning of its impulse response and the "cutoff time"
* of the filter. The cutoff time is defined as the reciprocal of the
* lowpass-filter cut off frequence in Hz. For example, if the
* lowpass filter were a sinc function, Npc would be the index of the
* impulse-response lookup-table corresponding to the first zero-
* crossing of the sinc function. (The inverse first zero-crossing
* time of a sinc function equals its nominal cutoff frequency in Hz.)
* Npc must be a power of 2 due to the details of the current
* implementation. The default value of 512 is sufficiently high that
* using linear interpolation to fill in between the table entries
* gives approximately 16-bit accuracy in filter coefficients.
*
* Nhc - is log base 2 of Npc.
*
* Na - is the number of bits devoted to linear interpolation of the
* filter coefficients.
*
* Np - is Na + Nhc, the number of bits to the right of the binary point
* in the integer "time" variable. To the left of the point, it indexes
* the input array (X), and to the right, it is interpreted as a number
* between 0 and 1 sample of the input X. Np must be less than 16 in
* this implementation.
*
* Nh - is the number of bits in the filter coefficients. The sum of Nh and
* the number of bits in the input data (typically 16) cannot exceed 32.
* Thus Nh should be 16. The largest filter coefficient should nearly
* fill 16 bits (32767).
*
* Nb - is the number of bits in the input data. The sum of Nb and Nh cannot
* exceed 32.
*
* Nhxn - is the number of bits to right shift after multiplying each input
* sample times a filter coefficient. It can be as great as Nh and as
* small as 0. Nhxn = Nh-2 gives 2 guard bits in the multiply-add
* accumulation. If Nhxn=0, the accumulation will soon overflow 32 bits.
*
* Nhg - is the number of guard bits in mpy-add accumulation (equal to Nh-Nhxn)
*
* NLpScl - is the number of bits allocated to the unity-gain normalization
* factor. The output of the lowpass filter is multiplied by LpScl and
* then right-shifted NLpScl bits. To avoid overflow, we must have
* Nb+Nhg+NLpScl < 32.
*/
aflibConverter::aflibConverter(
bool high_quality,
bool linear_interpolation,
bool filter_interpolation)
{
/* TODO put all these into an enum as it only makes sense to have
* one true at a time. - DAS
*/
interpFilt = filter_interpolation;
largeFilter = high_quality;
linearInterp = linear_interpolation;
_Xv = NULL;
_Yv = NULL;
_vol = 1.0;
}
aflibConverter::~aflibConverter()
{
deleteMemory();
}
void
aflibConverter::deleteMemory()
{
int i;
// Delete memory for the input and output arrays
if (_Xv != NULL)
{
for (i = 0; i < _nChans; i++)
{
delete [] _Xv[i];
_Xv[i] = NULL;
delete [] _Yv[i];
_Yv[i] = NULL;
}
delete [] _Xv;
_Xv = NULL;
delete [] _Yv;
_Yv = NULL;
}
}
void
aflibConverter::initialize(
double fac,
int channels,
double volume)
{
// This function will allow one to stream data. When a new data stream is to
// be input then this function should be called. Even if the factor and number
// of channels don't change. Otherwise each new data block sent to resample
// will be considered part of the previous data block. This function also allows
// one to specified a multiplication factor to adjust the final output. This
// applies to the small and large filter.
int i;
// Delete all previous allocated input and output buffer memory
deleteMemory();
_factor = fac;
_nChans = channels;
_initial = TRUE;
_vol = volume;
// Allocate all new memory
_Xv = new short * [_nChans];
_Yv = new short * [_nChans];
for (i = 0; i < _nChans; i++)
{
// Add extra to allow of offset of input data (Xoff in main routine)
_Xv[i] = new short[IBUFFSIZE + 256];
_Yv[i] = new short[(int)(((double)IBUFFSIZE)*_factor)];
memset(_Xv[i], 0, sizeof(short) * (IBUFFSIZE + 256));
}
}
int
aflibConverter::resample( /* number of output samples returned */
int& inCount, /* number of input samples to convert */
int outCount, /* number of output samples to compute */
short inArray[], /* input data */
short outArray[]) /* output data */
{
int Ycount;
// Use fast method with no filtering. Poor quality
if (linearInterp == TRUE)
Ycount = resampleFast(inCount,outCount,inArray,outArray);
// Use small filtering. Good qulaity
else if (largeFilter == FALSE)
Ycount = resampleWithFilter(inCount,outCount,inArray,outArray,
SMALL_FILTER_IMP, SMALL_FILTER_IMPD,
(unsigned short)(SMALL_FILTER_SCALE * _vol),
SMALL_FILTER_NMULT, SMALL_FILTER_NWING);
// Use large filtering Great quality
else
Ycount = resampleWithFilter(inCount,outCount,inArray,outArray,
LARGE_FILTER_IMP, LARGE_FILTER_IMPD,
(unsigned short)(LARGE_FILTER_SCALE * _vol),
LARGE_FILTER_NMULT, LARGE_FILTER_NWING);
_initial = FALSE;
return (Ycount);
}
int
aflibConverter::err_ret(char *s)
{
// aflib_debug("resample: %s \n\n",s); /* Display error message */
return -1;
}
int
aflibConverter::readData(
int inCount, /* _total_ number of frames in input file */
short inArray[], /* input data */
short *outPtr[], /* array receiving chan samps */
int dataArraySize, /* size of these arrays */
int Xoff, /* read into input array starting at this index */
bool init_count)
{
int i, Nsamps, c;
static unsigned int framecount; /* frames previously read */
short *ptr;
if (init_count == TRUE)
framecount = 0; /* init this too */
Nsamps = dataArraySize - Xoff; /* Calculate number of samples to get */
// Don't overrun input buffers
if (Nsamps > (inCount - (int)framecount))
{
Nsamps = inCount - framecount;
}
for (c = 0; c < _nChans; c++)
{
ptr = outPtr[c];
ptr += Xoff; /* Start at designated sample number */
for (i = 0; i < Nsamps; i++)
*ptr++ = (short) inArray[c * inCount + i + framecount];
}
framecount += Nsamps;
if ((int)framecount >= inCount) /* return index of last samp */
return (((Nsamps - (framecount - inCount)) - 1) + Xoff);
else
return 0;
}
int
aflibConverter::SrcLinear(
short X[],
short Y[],
double factor,
unsigned int *Time,
unsigned short& Nx,
unsigned short Nout)
{
short iconst;
short *Xp, *Ystart;
int v,x1,x2;
double dt; /* Step through input signal */
unsigned int dtb; /* Fixed-point version of Dt */
// unsigned int endTime; /* When Time reaches EndTime, return to user */
unsigned int start_sample, end_sample;
dt = 1.0/factor; /* Output sampling period */
dtb = (unsigned int)(dt*(1<<Np) + 0.5); /* Fixed-point representation */
start_sample = (*Time)>>Np;
Ystart = Y;
// endTime = *Time + (1<<Np)*(int)Nx;
/*
* TODO
* DAS: not sure why this was changed from *Time < endTime
* update: *Time < endTime causes seg fault. Also adds a clicking sound.
*/
while (Y - Ystart != Nout)
// while (*Time < endTime)
{
iconst = (*Time) & Pmask;
Xp = &X[(*Time)>>Np]; /* Ptr to current input sample */
x1 = *Xp++;
x2 = *Xp;
x1 *= ((1<<Np)-iconst);
x2 *= iconst;
v = x1 + x2;
*Y++ = WordToHword(v,Np); /* Deposit output */
*Time += dtb; /* Move to next sample by time increment */
}
end_sample = (*Time)>>Np;
Nx = end_sample - start_sample;
return (Y - Ystart); /* Return number of output samples */
}
int
aflibConverter::SrcUp(
short X[],
short Y[],
double factor,
unsigned int *Time,
unsigned short& Nx,
unsigned short Nout,
unsigned short Nwing,
unsigned short LpScl,
short Imp[],
short ImpD[],
bool Interp)
{
short *Xp, *Ystart;
int v;
double dt; /* Step through input signal */
unsigned int dtb; /* Fixed-point version of Dt */
// unsigned int endTime; /* When Time reaches EndTime, return to user */
unsigned int start_sample, end_sample;
dt = 1.0/factor; /* Output sampling period */
dtb = (unsigned int)(dt*(1<<Np) + 0.5); /* Fixed-point representation */
start_sample = (*Time)>>Np;
Ystart = Y;
// endTime = *Time + (1<<Np)*(int)Nx;
/*
* TODO
* DAS: not sure why this was changed from *Time < endTime
* update: *Time < endTime causes seg fault. Also adds a clicking sound.
*/
while (Y - Ystart != Nout)
// while (*Time < endTime)
{
Xp = &X[*Time>>Np]; /* Ptr to current input sample */
/* Perform left-wing inner product */
v = FilterUp(Imp, ImpD, Nwing, Interp, Xp, (short)(*Time&Pmask),-1);
/* Perform right-wing inner product */
v += FilterUp(Imp, ImpD, Nwing, Interp, Xp+1,
(short)((((*Time)^Pmask)+1)&Pmask), 1);
v >>= Nhg; /* Make guard bits */
v *= LpScl; /* Normalize for unity filter gain */
*Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
*Time += dtb; /* Move to next sample by time increment */
}
end_sample = (*Time)>>Np;
Nx = end_sample - start_sample;
return (Y - Ystart); /* Return the number of output samples */
}
int
aflibConverter::SrcUD(
short X[],
short Y[],
double factor,
unsigned int *Time,
unsigned short& Nx,
unsigned short Nout,
unsigned short Nwing,
unsigned short LpScl,
short Imp[],
short ImpD[],
bool Interp)
{
short *Xp, *Ystart;
int v;
double dh; /* Step through filter impulse response */
double dt; /* Step through input signal */
// unsigned int endTime; /* When Time reaches EndTime, return to user */
unsigned int dhb, dtb; /* Fixed-point versions of Dh,Dt */
unsigned int start_sample, end_sample;
dt = 1.0/factor; /* Output sampling period */
dtb = (unsigned int)(dt*(1<<Np) + 0.5); /* Fixed-point representation */
dh = MIN(Npc, factor*Npc); /* Filter sampling period */
dhb = (unsigned int)(dh*(1<<Na) + 0.5); /* Fixed-point representation */
start_sample = (*Time)>>Np;
Ystart = Y;
// endTime = *Time + (1<<Np)*(int)Nx;
/*
* TODO
* DAS: not sure why this was changed from *Time < endTime
* update: *Time < endTime causes seg fault. Also adds a clicking sound.
*/
while (Y - Ystart != Nout)
// while (*Time < endTime)
{
Xp = &X[*Time>>Np]; /* Ptr to current input sample */
v = FilterUD(Imp, ImpD, Nwing, Interp, Xp, (short)(*Time&Pmask),
-1, dhb); /* Perform left-wing inner product */
v += FilterUD(Imp, ImpD, Nwing, Interp, Xp+1,
(short)((((*Time)^Pmask)+1)&Pmask), 1, dhb); /* Perform right-wing inner product */
v >>= Nhg; /* Make guard bits */
v *= LpScl; /* Normalize for unity filter gain */
*Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
*Time += dtb; /* Move to next sample by time increment */
}
end_sample = (*Time)>>Np;
Nx = end_sample - start_sample;
return (Y - Ystart); /* Return the number of output samples */
}
int
aflibConverter::resampleFast( /* number of output samples returned */
int& inCount, /* number of input samples to convert */
int outCount, /* number of output samples to compute */
short inArray[], /* input data */
short outArray[]) /* output data */
{
unsigned int Time2; /* Current time/pos in input sample */
#if 0
unsigned short Ncreep;
#endif
unsigned short Xp, Xoff, Xread;
int OBUFFSIZE = (int)(((double)IBUFFSIZE)*_factor);
unsigned short Nout = 0, Nx, orig_Nx;
unsigned short maxOutput;
int total_inCount = 0;
int c, i, Ycount, last;
bool first_pass = TRUE;
Xoff = 10;
Nx = IBUFFSIZE - 2*Xoff; /* # of samples to process each iteration */
last = 0; /* Have not read last input sample yet */
Ycount = 0; /* Current sample and length of output file */
Xp = Xoff; /* Current "now"-sample pointer for input */
Xread = Xoff; /* Position in input array to read into */
if (_initial == TRUE)
_Time = (Xoff<<Np); /* Current-time pointer for converter */
do {
if (!last) /* If haven't read last sample yet */
{
last = readData(inCount, inArray, _Xv,
IBUFFSIZE, (int)Xread,first_pass);
first_pass = FALSE;
if (last && (last-Xoff<Nx)) { /* If last sample has been read... */
Nx = last-Xoff; /* ...calc last sample affected by filter */
if (Nx <= 0)
break;
}
}
if ((outCount-Ycount) > (OBUFFSIZE - (2*Xoff*_factor)) )
maxOutput = OBUFFSIZE - (unsigned short)(2*Xoff*_factor);
else
maxOutput = outCount-Ycount;
for (c = 0; c < _nChans; c++)
{
orig_Nx = Nx;
Time2 = _Time;
/* Resample stuff in input buffer */
Nout=SrcLinear(_Xv[c],_Yv[c],_factor,&Time2,orig_Nx,maxOutput);
}
Nx = orig_Nx;
_Time = Time2;
_Time -= (Nx<<Np); /* Move converter Nx samples back in time */
Xp += Nx; /* Advance by number of samples processed */
#if 0
Ncreep = (Time>>Np) - Xoff; /* Calc time accumulation in Time */
if (Ncreep) {
Time -= (Ncreep<<Np); /* Remove time accumulation */
Xp += Ncreep; /* and add it to read pointer */
}
#endif
for (c = 0; c < _nChans; c++)
{
for (i=0; i<IBUFFSIZE-Xp+Xoff; i++) { /* Copy part of input signal */
_Xv[c][i] = _Xv[c][i+Xp-Xoff]; /* that must be re-used */
}
}
if (last) { /* If near end of sample... */
last -= Xp; /* ...keep track were it ends */
if (!last) /* Lengthen input by 1 sample if... */
last++; /* ...needed to keep flag TRUE */
}
Xread = IBUFFSIZE - Nx; /* Pos in input buff to read new data into */
Xp = Xoff;
Ycount += Nout;
if (Ycount>outCount) {
Nout -= (Ycount-outCount);
Ycount = outCount;
}
if (Nout > OBUFFSIZE) /* Check to see if output buff overflowed */
// return err_ret("Output array overflow");
throw OnePrintError("Output array overflow"); // Added by OnePrint
for (c = 0; c < _nChans; c++)
for (i = 0; i < Nout; i++)
outArray[c * outCount + i + Ycount - Nout] = _Yv[c][i];
total_inCount += Nx;
} while (Ycount < outCount); /* Continue until done */
inCount = total_inCount;
return(Ycount); /* Return # of samples in output file */
}
int
aflibConverter::resampleWithFilter( /* number of output samples returned */
int& inCount, /* number of input samples to convert */
int outCount, /* number of output samples to compute */
short inArray[], /* input data */
short outArray[], /* output data */
short Imp[], short ImpD[],
unsigned short LpScl, unsigned short Nmult, unsigned short Nwing)
{
unsigned int Time2; /* Current time/pos in input sample */
#if 0
unsigned short Ncreep;
#endif
unsigned short Xp, Xoff, Xread;
int OBUFFSIZE = (int)(((double)IBUFFSIZE)*_factor);
unsigned short Nout = 0, Nx, orig_Nx;
unsigned short maxOutput;
int total_inCount = 0;
int c, i, Ycount, last;
bool first_pass = TRUE;
/* Account for increased filter gain when using factors less than 1 */
if (_factor < 1)
LpScl = (unsigned short)(LpScl*_factor + 0.5);
/* Calc reach of LP filter wing & give some creeping room */
Xoff = (unsigned short)(((Nmult+1)/2.0) * MAX(1.0,1.0/_factor) + 10);
if (IBUFFSIZE < 2*Xoff) /* Check input buffer size */
// return err_ret("IBUFFSIZE (or factor) is too small");
throw OnePrintError("IBUFFSIZE (or factor) is too small"); // Added by OnePrint
Nx = IBUFFSIZE - 2*Xoff; /* # of samples to process each iteration */
last = 0; /* Have not read last input sample yet */
Ycount = 0; /* Current sample and length of output file */
Xp = Xoff; /* Current "now"-sample pointer for input */
Xread = Xoff; /* Position in input array to read into */
if (_initial == TRUE)
_Time = (Xoff<<Np); /* Current-time pointer for converter */
do {
if (!last) /* If haven't read last sample yet */
{
last = readData(inCount, inArray, _Xv,
IBUFFSIZE, (int)Xread,first_pass);
first_pass = FALSE;
if (last && (last-Xoff<Nx)) { /* If last sample has been read... */
Nx = last-Xoff; /* ...calc last sample affected by filter */
if (Nx <= 0)
break;
}
}
if ( (outCount-Ycount) > (OBUFFSIZE - (2*Xoff*_factor)) )
maxOutput = OBUFFSIZE - (unsigned short)(2*Xoff*_factor);
else
maxOutput = outCount-Ycount;
for (c = 0; c < _nChans; c++)
{
orig_Nx = Nx;
Time2 = _Time;
/* Resample stuff in input buffer */
if (_factor >= 1) { /* SrcUp() is faster if we can use it */
Nout=SrcUp(_Xv[c],_Yv[c],_factor,
&Time2,Nx,maxOutput,Nwing,LpScl,Imp,ImpD,interpFilt);
}
else {
Nout=SrcUD(_Xv[c],_Yv[c],_factor,
&Time2,Nx,maxOutput,Nwing,LpScl,Imp,ImpD,interpFilt);
}
}
_Time = Time2;
_Time -= (Nx<<Np); /* Move converter Nx samples back in time */
Xp += Nx; /* Advance by number of samples processed */
#if 0
Ncreep = (Time>>Np) - Xoff; /* Calc time accumulation in Time */
if (Ncreep) {
Time -= (Ncreep<<Np); /* Remove time accumulation */
Xp += Ncreep; /* and add it to read pointer */
}
#endif
if (last) { /* If near end of sample... */
last -= Xp; /* ...keep track were it ends */
if (!last) /* Lengthen input by 1 sample if... */
last++; /* ...needed to keep flag TRUE */
}
Ycount += Nout;
if (Ycount > outCount) {
Nout -= (Ycount - outCount);
Ycount = outCount;
}
if (Nout > OBUFFSIZE) /* Check to see if output buff overflowed */
// return err_ret("Output array overflow");
throw OnePrintError("Output array overflow"); // Added by OnePrint
for (c = 0; c < _nChans; c++)
{
for (i = 0; i < Nout; i++)
{
outArray[c * outCount + i + Ycount - Nout] = _Yv[c][i];
}
}
int act_incount = (int)Nx;
for (c = 0; c < _nChans; c++)
{
for (i=0; i<IBUFFSIZE-act_incount+Xoff; i++) { /* Copy part of input signal */
_Xv[c][i] = _Xv[c][i+act_incount]; /* that must be re-used */
}
}
Xread = IBUFFSIZE - Nx; /* Pos in input buff to read new data into */
Xp = Xoff;
total_inCount += Nx;
} while (Ycount < outCount); /* Continue until done */
inCount = total_inCount;
return(Ycount); /* Return # of samples in output file */
}
int
aflibConverter::FilterUp(
short Imp[],
short ImpD[],
unsigned short Nwing,
bool Interp,
short *Xp,
short Ph,
short Inc)
{
short *Hp, *Hdp = NULL, *End;
short a = 0;
int v, t;
v=0;
Hp = &Imp[Ph>>Na];
End = &Imp[Nwing];
if (Interp)
{
Hdp = &ImpD[Ph>>Na];
a = Ph & Amask;
}
if (Inc == 1) /* If doing right wing... */
{ /* ...drop extra coeff, so when Ph is */
End--; /* 0.5, we don't do too many mult's */
if (Ph == 0) /* If the phase is zero... */
{ /* ...then we've already skipped the */
Hp += Npc; /* first sample, so we must also */
Hdp += Npc; /* skip ahead in Imp[] and ImpD[] */
}
}
if (Interp)
{
while (Hp < End)
{
t = *Hp; /* Get filter coeff */
t += (((int)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
Hdp += Npc; /* Filter coeff differences step */
t *= *Xp; /* Mult coeff by input sample */
if (t & (1<<(Nhxn-1))) /* Round, if needed */
t += (1<<(Nhxn-1));
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Hp += Npc; /* Filter coeff step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
}
else
{
while (Hp < End)
{
t = *Hp; /* Get filter coeff */
t *= *Xp; /* Mult coeff by input sample */
if (t & (1<<(Nhxn-1))) /* Round, if needed */
t += (1<<(Nhxn-1));
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Hp += Npc; /* Filter coeff step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
}
return(v);
}
int
aflibConverter::FilterUD(
short Imp[],
short ImpD[],
unsigned short Nwing,
bool Interp,
short *Xp,
short Ph,
short Inc,
unsigned short dhb)
{
short a;
short *Hp, *Hdp, *End;
int v, t;
unsigned int Ho;
v=0;
Ho = (Ph*(unsigned int)dhb)>>Np;
End = &Imp[Nwing];
if (Inc == 1) /* If doing right wing... */
{ /* ...drop extra coeff, so when Ph is */
End--; /* 0.5, we don't do too many mult's */
if (Ph == 0) /* If the phase is zero... */
Ho += dhb; /* ...then we've already skipped the */
} /* first sample, so we must also */
/* skip ahead in Imp[] and ImpD[] */
if (Interp)
{
while ((Hp = &Imp[Ho>>Na]) < End)
{
t = *Hp; /* Get IR sample */
Hdp = &ImpD[Ho>>Na]; /* get interp (lower Na) bits from diff table*/
a = Ho & Amask; /* a is logically between 0 and 1 */
t += (((int)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
t *= *Xp; /* Mult coeff by input sample */
if (t & 1<<(Nhxn-1)) /* Round, if needed */
t += 1<<(Nhxn-1);
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Ho += dhb; /* IR step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
}
else
{
while ((Hp = &Imp[Ho>>Na]) < End)
{
t = *Hp; /* Get IR sample */
t *= *Xp; /* Mult coeff by input sample */
if (t & 1<<(Nhxn-1)) /* Round, if needed */
t += 1<<(Nhxn-1);
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Ho += dhb; /* IR step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
}
return(v);
}
|