File: signal_op.cpp

package info (click to toggle)
libofa 0.9.3-3.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 1,936 kB
  • ctags: 460
  • sloc: cpp: 24,470; sh: 8,366; makefile: 45; ansic: 14
file content (368 lines) | stat: -rw-r--r-- 6,717 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/* ------------------------------------------------------------------

   libofa -- the Open Fingerprint Architecture library

   Copyright (C) 2006 MusicIP Corporation
   All rights reserved.

-------------------------------------------------------------------*/
// FILE: "signal_op.cpp"
// MODULE: Implementation for class Signal_op
// AUTHOR: Frode Holm
// DATE CREATED: 1/12/06


#include <math.h>
#include "signal_op.h"
#include "AFLIB/aflibConverter.h"
#include "error_op.h"


Signal_op::Signal_op()
{
	Data = 0;
	iOwnData = false;
	NumChannels = 0;
	BufSize = 0;
	NumBlocks = 0;
	Rate = 0;
}

Signal_op::~Signal_op()
{
	if (iOwnData)
		delete[] Data;
}


void
Signal_op::Load(short* samples, long size, int sRate, bool stereo)
{
	Data = samples;
	iOwnData = false;
	NumChannels = stereo ? 2 : 1;
	BufSize = size;
	NumBlocks = BufSize / NumChannels;
	Rate = sRate;
}


// CutSignal deletes samples from the sample buffer
void
Signal_op::CutSignal(double start, double dur)
{
	int i, n;
	short* samples = Data;

	long startS = (long)(start * Rate / 1000.0);
	long stopS = (long)(startS + dur * Rate / 1000.0);

	NumBlocks = (stopS-startS);
	if (NumBlocks <= 0)
		throw OnePrintError("Programming error: CutSignal");

	BufSize = NumBlocks * NumChannels;
	short* tmpBuf = new short[BufSize];

	startS *= NumChannels;
	stopS *= NumChannels;

	// Copy to new buffer
	for (i=startS, n=0; i<stopS; i++, n++)
		tmpBuf[n] = samples[i];
	if (iOwnData)
		delete[] Data;
	Data = tmpBuf;
	iOwnData = true;
}


void
Signal_op::PrepareStereo(long newRate, double silTh)
{
	// Convert to mono
	if (GetCrossCorrelation() < -0.98)
		LMinusR();
	else
		LPlusR();

	PrepareMono(newRate, silTh);
}


void
Signal_op::PrepareMono(long newRate, double silTh)
{
	RemoveSilence(silTh, silTh);

	RemoveDCOffset();

	// Check for rate conversion
	if (newRate != Rate)
		ConvertSampleRate(newRate);

	Normalize();

}

// Add left and right channels

void Signal_op::LPlusR() 
{
	if (NumChannels != 2) 
		return;
	short* tmpBuf = new short[NumBlocks];
	short* samples = Data;
	for (long i=0, n=0; i<NumBlocks*2; i+=2, n++) 
	{
		int sum = samples[i] + samples[i+1];
		tmpBuf[n] = sum / 2;
	}
	if (iOwnData)
		delete[] Data;
	Data = tmpBuf;
	iOwnData = true;
	NumChannels = 1;
	BufSize = NumBlocks;
}


// Subtract left and right channels.

void Signal_op::LMinusR() 
{
	if (NumChannels != 2) 
		return;
	short * tmpBuf = new short[NumBlocks];
	short * samples = Data;
	for (long i=0, n=0; i<NumBlocks*2; i+=2, n++) 
	{
		int sum = samples[i] - samples[i+1];
		tmpBuf[n] = sum / 2;
	}
	if (iOwnData)
		delete[] Data;
	Data = tmpBuf;
	iOwnData = true;
	NumChannels = 1;
	BufSize = NumBlocks;
}


void 
Signal_op::RemoveSilence(double startTh, double endTh)
{
	long i, n;

	short* samples = Data;

	// Truncate leading and trailing silence
	long stop = NumBlocks;
	int silBlock = (int) (Rate*2.2/400);
	int count = 0;
	long sum = 0;
	long start = 0;

	// Front silence removal
	while (start < stop) 
	{
		sum += abs(samples[start]);
		count++;
		if (count >= silBlock)
		{
			double av = (double)sum/silBlock;
			if (av > startTh)
			{
				start -= count-1;
				break;
			}
			count = 0;
			sum = 0;
		}

		start++;
	}
    if (start < 0) start = 0;

	// Back silence removal
	count = 0;
	sum = 0;
	while (stop > start) 
	{
		sum += abs(samples[stop-1]);
		count++;
		if (count >= silBlock)
		{
			double av = (double)sum/silBlock;
			if (av > endTh)
			{
				stop += count;
				break;
			}
			count = 0;
			sum = 0;
		}

	    stop--;
	}
	if (stop > NumBlocks) stop = NumBlocks;
	
	if (stop-start <= 0)
		throw OnePrintError("Signal has silence only", SILENCEONLY);

    NumBlocks = (stop-start);
	if (NumBlocks <= 0)
		throw OnePrintError("Signal is corrupt");

	BufSize = NumBlocks;
	short* tmpBuf = new short[BufSize];

	// Copy to new buffer
	for (i=start, n=0; i<stop; i++, n++)
		tmpBuf[n] = samples[i];
	if (iOwnData)
		delete[] Data;
	Data = tmpBuf;
	iOwnData = true;
}


void
Signal_op::RemoveDCOffset()
{
	long len = GetLength();
	short* x = Data;
	double yn=0, yn1=0;
	double sum = 0;
	long cnt = 0;
	double ramp = 1000.0;					// Ramp-up time (ms)
	long lim = (long) ((ramp/1000)*GetRate());
	double k = 1000.0/(GetRate()*ramp);
	double maxP = 0, maxN = 0;
	for (long n=1; n<=len; n++)
	{
		yn = yn1 + k*((double)x[n-1] - yn1);
		yn1 = yn;
		if (n > lim*3)
		{
			sum += yn;
			cnt++;
		}
		if (x[n-1] > maxP)
			maxP = x[n-1];
		if (x[n-1] < maxN)
			maxN = x[n-1];
	}

	double dcOffset = sum/(double)cnt;

	// Remove if greater than this
	if (fabs(dcOffset) > 15)	// otherwise don't bother
	{
		// Check to se if we have to "denormalize" to make sure there's headroom for the DC removal
		double factorP=0, factorN=0, factor=0;
		if (maxP - dcOffset > MaxSample)
			factorP = ((double)MaxSample - dcOffset) / maxP;
		if (maxN - dcOffset < MinSample)
			factorN = ((double)MinSample + dcOffset) / maxN;
		// only one can apply
		if (factorP > 0)
			factor = factorP;
		else if (factorN > 0)
			factor = factorN;

		for (long i=0; i<len; i++)
		{
			double sample = (double)x[i];
			if (factor > 0)
				sample *= factor;
			sample -= dcOffset;
			// round sample
			if (sample > 0)
				x[i] = (short) floor(sample + 0.5);
			else
				x[i] = (short) ceil(sample - 0.5);
		}
	}
}


void
Signal_op::Normalize()
{
	short* samples = Data;

	long i;
	int max = 0;
	double factor;
	
	for (i=0; i<NumBlocks; i++)
	{
		if (abs(samples[i]) > max)
			max = abs(samples[i]);
	}

	if (max >= MaxSample) {
		factor = 1;
	} else {
		factor = MaxSample / (double) max;
		for (i=0; i<NumBlocks; i++)
		{
			double tmp = (double)samples[i] * factor;
			// round sample
			if (tmp > 0)
				samples[i] = (short) floor(tmp + 0.5);
			else
				samples[i] = (short) ceil(tmp - 0.5);
		}
	}
}



// Mono signals only
void 
Signal_op::ConvertSampleRate(long targetSR)
{
	if (NumChannels > 1) return;

	aflibConverter srConv(true, false, true);	// Large filter with coefficients interpolation

	double factor = (double)targetSR/(double)Rate;

	long tmpSize = (long) (BufSize * factor + 2);
	short* tmpBuf = new short[tmpSize];

	srConv.initialize(factor, 1);

	int inCount = BufSize;
	int outCount = (int) (BufSize * factor);
	int outRet;
	outRet = srConv.resample(inCount, outCount, GetBuffer(), tmpBuf);

	if (iOwnData)
		delete[] Data;
	Data = tmpBuf;
	iOwnData = true;
	Rate = targetSR;
	NumBlocks = BufSize = outRet;
}


double
Signal_op::GetCrossCorrelation()
{
	// Cross Channel Correlation - stereo signals only
	long k;
	double C12 = 0, C11 = 0, C22 = 0;
	short* samples = Data;

	for (k=0; k<NumBlocks*2; k+=2) 
	{
		C12 += samples[k]*samples[k+1];
		C11 += samples[k]*samples[k];
		C22 += samples[k+1]*samples[k+1];
	}

	return C12/sqrt(C11*C22);
}