1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/* ------------------------------------------------------------------
libofa -- the Open Fingerprint Architecture library
Copyright (C) 2006 MusicIP Corporation
All rights reserved.
-------------------------------------------------------------------*/
// FILE: "mainprint.cpp"
// MODULE: Top level calling code and main functions
// AUTHOR: Frode Holm
// DATE CREATED: 1/12/06
#include <vector>
#include "ofa1/ofa.h"
#include "signal_op.h"
#include "fft_op.h"
#include "frametracker_op.h"
#include "error_op.h"
#include "JAMA/jama_svd.h"
using namespace TNT;
using namespace JAMA;
typedef float Real;
// Print size
const int Dim = 7;
const int Res = 40;
const long SongLen = 120000; // length to analyze (ms)
const int FrameSize = 8192; // FFT framesize
void preprocessing(short* samples, long size, int sRate, bool stereo, Signal_op& sig);
void core_print(Signal_op& sig, unsigned char *out);
void pitch_print(Signal_op& sig, unsigned char *out);
char *base64encode(const char *input, int lentext);
// Retreive the version of the library
extern "C"
void ofa_get_version(int *major, int *minor, int *rev)
{
sscanf(VERSION, "%d.%d.%d", major, minor, rev);
}
// ofa_create_print is the top level function generating the fingerprint.
// NOTE THAT THE PASSED IN DATA MAY BE BYTE SWAPPED DURING THE METHOD.
// ASSUME THAT DATA IN THE INPUT BUFFER IS DESTROYED AS A SIDE-EFFECT OF
// CALLING THIS FUNCTION
//
// data: a buffer of 16-bit samples in interleaved format (if stereo), i.e. L,R,L,R, etc.
// This buffer is destroyed during processing.
// Ideally, this buffer should contain the entire song to be analyzed, but the process will only
// need the first 2min + 10sec + any silence prepending the actual audio. Since the precise silence
// interval will only be known after a couple of processing steps, the caller must make adequate
// allowance for this. Caveat emptor.
// byteOrder: OFA_LITTLE_ENDIAN, or OFA_BIG_ENDIAN - indicates the byte
// order of the data being passed in.
// size: the size of the buffer, in number of samples.
// sRate: the sample rate of the signal. This can be an arbitrary rate, as long as it can be expressed
// as an integer (in samples per second). If this is different from 44100, rate conversion will
// be performed during preprocessing, which will add significantly to the overhead.
// stereo: 1 if there are left and right channels stored, 0 if the data is mono
//
// On success, a valid text representation of the fingerprint is returned.
// The returned buffer will remain valid until the next call to ofa_create_print
extern "C"
const char *ofa_create_print(unsigned char *data, int byteOrder, long size, int sRate, int stereo)
{
short *samples = (short *) data;
#ifdef BIG_ENDIAN
if (byteOrder == OFA_LITTLE_ENDIAN) {
for (int i = 0; i < size; ++i) {
samples[i] = data[2*i+1] << 8 | data[2*i];
}
}
#else
if (byteOrder == OFA_BIG_ENDIAN) {
for (int i = 0; i < size; ++i) {
samples[i] = data[2*i] << 8 | data[2*i+1];
}
}
#endif
try {
Signal_op sig;
unsigned char bytes[Dim * Res * 2 + 5];
preprocessing(samples, size, sRate, stereo, sig);
bytes[0] = 1; // version marker
core_print(sig, bytes + 1);
pitch_print(sig, bytes + (Dim * Res * 2 + 1));
return base64encode((char*) bytes, Dim * Res * 2 + 5);
} catch (OnePrintError e) {
return 0;
}
}
void
preprocessing(short* samples, long size, int sRate, bool stereo, Signal_op& sig)
{
int ch = stereo ? 2 : 1;
long sec135 = 135 * sRate * ch;
if (size > sec135) size = sec135;
sig.Load(samples, size, sRate, stereo);
if (stereo)
sig.PrepareStereo(44100, 50);
else
sig.PrepareMono(44100, 50);
if (sig.GetDuration() > SongLen+10000)
sig.CutSignal(10000, SongLen);
}
void
core_print(Signal_op& sig, unsigned char *out)
{
FFT_op fft;
fft.LoadSignal(&sig);
fft.SetSize(FrameSize,false);
fft.SetWindowShape(HAMMING);
fft.Compute(0);
fft.ReSample(Res, true);
if (fft.GetNumFrames() < Res)
throw OnePrintError(FILETOOSHORT);
// Compute SVD
int i,j;
float* fr;
int numBins = fft.GetNumBins();
int numFrames = fft.GetNumFrames();
Array2D<Real> in2D(numFrames, numBins);
Array2D<Real> v(numBins, numBins);
// copy into Array2D
for (i = 0; i < numFrames; i++)
{
fr = fft.GetFrame(i);
for (j = 0; j < numBins; j++)
in2D[i][j] = fr[j];
}
SVD<Real> s(in2D);
s.getV(v);
int pos = 0;
for (i = 0; i < Dim; i++) {
for (j = 0; j < Res; j++) {
short value = short(v[j][i] * 32767);
out[pos++] = ((value & 0xff00) >> 8);
out[pos++] = (value & 0x00ff);
}
}
}
struct pitchPacket {
pitchPacket() { dur = 0; tracks = 0; amp = 0; }
double dur;
int tracks;
double amp;
};
void
pitch_print(Signal_op& sig, unsigned char *out)
{
if (sig.GetDuration() > 40000)
sig.CutSignal(0, 30000);
FFT_op fft;
fft.LoadSignal(&sig);
fft.SetSize(FrameSize,false);
fft.SetWindowShape(HAMMING);
fft.Compute(0.8);
FrameTracker_op fTrk(0.005f, 0.03f, 0.1f);
fTrk.Compute(fft);
vector<pitchPacket> notes(128);
double loFreq = 50;
double hiFreq = 1500;
// Collect track statistics
TrackList_op* trl = fTrk.getTracks();
TrackFrame_op* base = trl->getBaseFrame();
double dur, amp;
int avPitch;
int totalTracks = 0;
while (base != 0)
{
TrackData_op* td = base->getBaseTrack();
while (td != 0)
{
if (td->isHead() && td->getAvgPitch() > loFreq && td->getAvgPitch() < hiFreq)
{
dur = td->getDuration();
avPitch = fft.FreqToMidi(td->getAvgPitch());
amp = td->getAvgAmplitude();
notes[avPitch].dur += dur;
notes[avPitch].tracks++;
notes[avPitch].amp += amp;
totalTracks++;
}
td = td->getHigher();
}
base = base->getNext();
}
// Find the 4 most prominent notes
double maxStrength[4];
int index[4];
int i;
for (i=0; i<4; i++)
{
maxStrength[i] = 0;
index[i] = 0;
}
for (i=0; i<128; i++)
{
if (notes[i].tracks == 0) continue;
double strength = notes[i].amp + notes[i].dur/10000.0; // "linear" spread
// "manual" sort
if (strength > maxStrength[0])
{
maxStrength[3] = maxStrength[2];
maxStrength[2] = maxStrength[1];
maxStrength[1] = maxStrength[0];
maxStrength[0] = strength;
index[3] = index[2];
index[2] = index[1];
index[1] = index[0];
index[0] = i;
}
else if (strength > maxStrength[1])
{
maxStrength[3] = maxStrength[2];
maxStrength[2] = maxStrength[1];
maxStrength[1] = strength;
index[3] = index[2];
index[2] = index[1];
index[1] = i;
}
else if (strength > maxStrength[2])
{
maxStrength[3] = maxStrength[2];
maxStrength[2] = strength;
index[3] = index[2];
index[2] = i;
}
else if (strength > maxStrength[3])
{
maxStrength[3] = strength;
index[3] = i;
}
}
for (i=0; i<4; i++)
{
out[i] = index[i];
}
}
static char encodingTable[64] = {
'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P',
'Q','R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f',
'g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v',
'w','x','y','z','0','1','2','3','4','5','6','7','8','9','+','/'
};
// The return buffer is only valid until the next call to this method
char *base64encode(const char *input, int lentext) {
static char out[758];
unsigned char inbuf[3], outbuf[4];
int i, ctcopy, pos = 0, ixtext = 0;
while (true) {
int ctremaining = lentext - ixtext;
if (ctremaining <= 0)
break;
for (i = 0; i < 3; i++) {
int ix = ixtext + i;
if (ix < lentext)
inbuf[i] = (unsigned char) input[ix];
else
inbuf[i] = 0;
}
outbuf[0] = (unsigned char) ((inbuf [0] & 0xFC) >> 2);
outbuf[1] = (unsigned char) (((inbuf [0] & 0x03) << 4) | ((inbuf [1] & 0xF0) >> 4));
outbuf[2] = (unsigned char) (((inbuf [1] & 0x0F) << 2) | ((inbuf [2] & 0xC0) >> 6));
outbuf[3] = (unsigned char) (inbuf [2] & 0x3F);
switch (ctremaining) {
case 1:
ctcopy = 2;
break;
case 2:
ctcopy = 3;
break;
default:
ctcopy = 4;
break;
}
for (i = 0; i < ctcopy; i++) {
out[pos++] = encodingTable[outbuf[i]];
}
for (i = ctcopy; i < 4; i++) {
out[pos++] = '=';
}
ixtext += 3;
}
out[pos] = 0;
return out;
}
|