1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
|
/*
* Reverb.cpp
* ----------
* Purpose: Mixing code for reverb.
* Notes : Ugh... This should really be removed at some point.
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#ifndef NO_REVERB
#include "Reverb.h"
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2)
#include "../common/mptCPU.h"
#endif
#include "../soundlib/MixerLoops.h"
#include "mpt/base/numbers.hpp"
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2) && defined(MPT_ARCH_INTRINSICS_X86_SSE2)
#if MPT_COMPILER_MSVC
#include <intrin.h>
#endif
#include <emmintrin.h>
#endif
#endif // NO_REVERB
OPENMPT_NAMESPACE_BEGIN
#ifndef NO_REVERB
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2) && defined(MPT_ARCH_INTRINSICS_X86_SSE2)
// Load two 32-bit values
static MPT_FORCEINLINE __m128i Load64SSE(const int32 *x) { return _mm_loadl_epi64(reinterpret_cast<const __m128i *>(x)); }
// Load four 16-bit values
static MPT_FORCEINLINE __m128i Load64SSE(const LR16 (&x)[2]) { return _mm_loadl_epi64(&reinterpret_cast<const __m128i &>(x)); }
// Store two 32-bit or four 16-bit values from register
static MPT_FORCEINLINE void Store64SSE(int32 *dst, __m128i src) { return _mm_storel_epi64(reinterpret_cast<__m128i *>(dst), src); }
static MPT_FORCEINLINE void Store64SSE(LR16 (&dst)[2], __m128i src) { return _mm_storel_epi64(&reinterpret_cast<__m128i &>(dst), src); }
#endif
CReverb::CReverb()
{
// Reverb mix buffers
MemsetZero(g_RefDelay);
MemsetZero(g_LateReverb);
}
static int32 OnePoleLowPassCoef(int32 scale, double g, double F_c, double F_s)
{
if(g > 0.999999) return 0;
g *= g;
double scale_over_1mg = scale / (1.0 - g);
double cosw = std::cos((2.0 * mpt::numbers::pi) * F_c / F_s);
return mpt::saturate_round<int32>((1.0 - (std::sqrt((g + g) * (1.0 - cosw) - g * g * (1.0 - cosw * cosw)) + g * cosw)) * scale_over_1mg);
}
static double mBToLinear(int32 value_mB)
{
if(!value_mB) return 1;
if(value_mB <= -100000) return 0;
const double val = value_mB * 3.321928094887362304 / (100.0 * 20.0); // log2(10)/(100*20)
return std::pow(2.0, val - static_cast<int32>(0.5 + val));
}
static int32 mBToLinear(int32 scale, int32 value_mB)
{
return mpt::saturate_round<int32>(mBToLinear(value_mB) * scale);
}
static constexpr std::pair<SNDMIX_REVERB_PROPERTIES, const char *> ReverbPresets[NUM_REVERBTYPES] =
{
// Examples simulating General MIDI 2'musical' reverb presets
// Name (Decay time) Description
// Plate (1.3s) A plate reverb simulation.
{{ -1000, -200, 1.30f,0.90f, 0,0.002f, 0,0.010f,100.0f, 75.0f }, "GM Plate"},
// Small Room (1.1s) A small size room with a length of 5m or so.
{{ -1000, -600, 1.10f,0.83f, -400,0.005f, 500,0.010f,100.0f,100.0f }, "GM Small Room"},
// Medium Room (1.3s) A medium size room with a length of 10m or so.
{{ -1000, -600, 1.30f,0.83f, -1000,0.010f, -200,0.020f,100.0f,100.0f }, "GM Medium Room"},
// Large Room (1.5s) A large size room suitable for live performances.
{{ -1000, -600, 1.50f,0.83f, -1600,0.020f, -1000,0.040f,100.0f,100.0f }, "GM Large Room"},
// Medium Hall (1.8s) A medium size concert hall.
{{ -1000, -600, 1.80f,0.70f, -1300,0.015f, -800,0.030f,100.0f,100.0f }, "GM Medium Hall"},
// Large Hall (1.8s) A large size concert hall suitable for a full orchestra.
{{ -1000, -600, 1.80f,0.70f, -2000,0.030f, -1400,0.060f,100.0f,100.0f }, "GM Large Hall"},
{{ -1000, -100, 1.49f,0.83f, -2602,0.007f, 200,0.011f,100.0f,100.0f }, "Generic"},
{{ -1000,-6000, 0.17f,0.10f, -1204,0.001f, 207,0.002f,100.0f,100.0f }, "Padded Cell"},
{{ -1000, -454, 0.40f,0.83f, -1646,0.002f, 53,0.003f,100.0f,100.0f }, "Room"},
{{ -1000,-1200, 1.49f,0.54f, -370,0.007f, 1030,0.011f,100.0f, 60.0f }, "Bathroom"},
{{ -1000,-6000, 0.50f,0.10f, -1376,0.003f, -1104,0.004f,100.0f,100.0f }, "Living Room"},
{{ -1000, -300, 2.31f,0.64f, -711,0.012f, 83,0.017f,100.0f,100.0f }, "Stone Room"},
{{ -1000, -476, 4.32f,0.59f, -789,0.020f, -289,0.030f,100.0f,100.0f }, "Auditorium"},
{{ -1000, -500, 3.92f,0.70f, -1230,0.020f, -2,0.029f,100.0f,100.0f }, "Concert Hall"},
{{ -1000, 0, 2.91f,1.30f, -602,0.015f, -302,0.022f,100.0f,100.0f }, "Cave"},
{{ -1000, -698, 7.24f,0.33f, -1166,0.020f, 16,0.030f,100.0f,100.0f }, "Arena"},
{{ -1000,-1000,10.05f,0.23f, -602,0.020f, 198,0.030f,100.0f,100.0f }, "Hangar"},
{{ -1000,-4000, 0.30f,0.10f, -1831,0.002f, -1630,0.030f,100.0f,100.0f }, "Carpeted Hallway"},
{{ -1000, -300, 1.49f,0.59f, -1219,0.007f, 441,0.011f,100.0f,100.0f }, "Hallway"},
{{ -1000, -237, 2.70f,0.79f, -1214,0.013f, 395,0.020f,100.0f,100.0f }, "Stone Corridor"},
{{ -1000, -270, 1.49f,0.86f, -1204,0.007f, -4,0.011f,100.0f,100.0f }, "Alley"},
{{ -1000,-3300, 1.49f,0.54f, -2560,0.162f, -613,0.088f, 79.0f,100.0f }, "Forest"},
{{ -1000, -800, 1.49f,0.67f, -2273,0.007f, -2217,0.011f, 50.0f,100.0f }, "City"},
{{ -1000,-2500, 1.49f,0.21f, -2780,0.300f, -2014,0.100f, 27.0f,100.0f }, "Mountains"},
{{ -1000,-1000, 1.49f,0.83f,-10000,0.061f, 500,0.025f,100.0f,100.0f }, "Quarry"},
{{ -1000,-2000, 1.49f,0.50f, -2466,0.179f, -2514,0.100f, 21.0f,100.0f }, "Plain"},
{{ -1000, 0, 1.65f,1.50f, -1363,0.008f, -1153,0.012f,100.0f,100.0f }, "Parking Lot"},
{{ -1000,-1000, 2.81f,0.14f, 429,0.014f, 648,0.021f, 80.0f, 60.0f }, "Sewer Pipe"},
{{ -1000,-4000, 1.49f,0.10f, -449,0.007f, 1700,0.011f,100.0f,100.0f }, "Underwater"},
};
mpt::ustring GetReverbPresetName(uint32 preset)
{
return (preset < NUM_REVERBTYPES) ? mpt::ToUnicode(mpt::Charset::ASCII, ReverbPresets[preset].second) : mpt::ustring{};
}
const SNDMIX_REVERB_PROPERTIES *GetReverbPreset(uint32 preset)
{
return (preset < NUM_REVERBTYPES) ? &ReverbPresets[preset].first : nullptr;
}
//////////////////////////////////////////////////////////////////////////
//
// I3DL2 environmental reverb support
//
struct REFLECTIONPRESET
{
int32 lDelayFactor;
int16 sGainLL, sGainRR, sGainLR, sGainRL;
};
const REFLECTIONPRESET gReflectionsPreset[ENVIRONMENT_NUMREFLECTIONS] =
{
// %Delay, ll, rr, lr, rl
{0, 9830, 6554, 0, 0},
{10, 6554, 13107, 0, 0},
{24, -9830, 13107, 0, 0},
{36, 13107, -6554, 0, 0},
{54, 16384, 16384, -1638, -1638},
{61, -13107, 8192, -328, -328},
{73, -11468, -11468, -3277, 3277},
{87, 13107, -9830, 4916, -4916}
};
////////////////////////////////////////////////////////////////////////////////////
//
// Implementation
//
static MPT_FORCEINLINE int32 ftol(float f) { return static_cast<int32>(f); }
static void I3dl2_to_Generic(
const SNDMIX_REVERB_PROPERTIES *pReverb,
EnvironmentReverb *pRvb,
float flOutputFreq,
int32 lMinRefDelay,
int32 lMaxRefDelay,
int32 lMinRvbDelay,
int32 lMaxRvbDelay,
int32 lTankLength)
{
float flDelayFactor, flDelayFactorHF, flDecayTimeHF;
int32 lDensity, lTailDiffusion;
// Common parameters
pRvb->ReverbLevel = pReverb->lReverb;
pRvb->ReflectionsLevel = pReverb->lReflections;
pRvb->RoomHF = pReverb->lRoomHF;
// HACK: Somewhat normalize the reverb output level
int32 lMaxLevel = (pRvb->ReverbLevel > pRvb->ReflectionsLevel) ? pRvb->ReverbLevel : pRvb->ReflectionsLevel;
if (lMaxLevel < -600)
{
lMaxLevel += 600;
pRvb->ReverbLevel -= lMaxLevel;
pRvb->ReflectionsLevel -= lMaxLevel;
}
// Pre-Diffusion factor (for both reflections and late reverb)
lDensity = 8192 + ftol(79.31f * pReverb->flDensity);
pRvb->PreDiffusion = lDensity;
// Late reverb diffusion
lTailDiffusion = ftol((0.15f + pReverb->flDiffusion * (0.36f*0.01f)) * 32767.0f);
if (lTailDiffusion > 0x7f00) lTailDiffusion = 0x7f00;
pRvb->TankDiffusion = lTailDiffusion;
// Verify reflections and reverb delay parameters
float flRefDelay = pReverb->flReflectionsDelay;
if (flRefDelay > 0.100f) flRefDelay = 0.100f;
int32 lReverbDelay = ftol(pReverb->flReverbDelay * flOutputFreq);
int32 lReflectionsDelay = ftol(flRefDelay * flOutputFreq);
int32 lReverbDecayTime = ftol(pReverb->flDecayTime * flOutputFreq);
if (lReflectionsDelay < lMinRefDelay)
{
lReverbDelay -= (lMinRefDelay - lReflectionsDelay);
lReflectionsDelay = lMinRefDelay;
}
if (lReflectionsDelay > lMaxRefDelay)
{
lReverbDelay += (lReflectionsDelay - lMaxRefDelay);
lReflectionsDelay = lMaxRefDelay;
}
// Adjust decay time when adjusting reverb delay
if (lReverbDelay < lMinRvbDelay)
{
lReverbDecayTime -= (lMinRvbDelay - lReverbDelay);
lReverbDelay = lMinRvbDelay;
}
if (lReverbDelay > lMaxRvbDelay)
{
lReverbDecayTime += (lReverbDelay - lMaxRvbDelay);
lReverbDelay = lMaxRvbDelay;
}
pRvb->ReverbDelay = lReverbDelay;
pRvb->ReverbDecaySamples = lReverbDecayTime;
// Setup individual reflections delay and gains
for (uint32 iRef=0; iRef<ENVIRONMENT_NUMREFLECTIONS; iRef++)
{
EnvironmentReflection &ref = pRvb->Reflections[iRef];
ref.Delay = lReflectionsDelay + (gReflectionsPreset[iRef].lDelayFactor * lReverbDelay + 50)/100;
ref.GainLL = gReflectionsPreset[iRef].sGainLL;
ref.GainRL = gReflectionsPreset[iRef].sGainRL;
ref.GainLR = gReflectionsPreset[iRef].sGainLR;
ref.GainRR = gReflectionsPreset[iRef].sGainRR;
}
// Late reverb decay time
if (lTankLength < 10) lTankLength = 10;
flDelayFactor = (lReverbDecayTime <= lTankLength) ? 1.0f : ((float)lTankLength / (float)lReverbDecayTime);
pRvb->ReverbDecay = ftol(std::pow(0.001f, flDelayFactor) * 32768.0f);
// Late Reverb Decay HF
flDecayTimeHF = (float)lReverbDecayTime * pReverb->flDecayHFRatio;
flDelayFactorHF = (flDecayTimeHF <= (float)lTankLength) ? 1.0f : ((float)lTankLength / flDecayTimeHF);
pRvb->flReverbDamping = std::pow(0.001f, flDelayFactorHF);
}
void CReverb::Shutdown(MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol)
{
gnReverbSend = false;
gnRvbLOfsVol = 0;
gnRvbROfsVol = 0;
// Clear out all reverb state
g_bLastInPresent = false;
g_bLastOutPresent = false;
g_nLastRvbIn_xl = g_nLastRvbIn_xr = 0;
g_nLastRvbIn_yl = g_nLastRvbIn_yr = 0;
g_nLastRvbOut_xl = g_nLastRvbOut_xr = 0;
MemsetZero(gnDCRRvb_X1);
MemsetZero(gnDCRRvb_Y1);
// Zero internal buffers
MemsetZero(g_LateReverb.Diffusion1);
MemsetZero(g_LateReverb.Diffusion2);
MemsetZero(g_LateReverb.Delay1);
MemsetZero(g_LateReverb.Delay2);
MemsetZero(g_RefDelay.RefDelayBuffer);
MemsetZero(g_RefDelay.PreDifBuffer);
MemsetZero(g_RefDelay.RefOut);
}
void CReverb::Initialize(bool bReset, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 MixingFreq)
{
if (m_Settings.m_nReverbType >= NUM_REVERBTYPES) m_Settings.m_nReverbType = 0;
const SNDMIX_REVERB_PROPERTIES *rvbPreset = &ReverbPresets[m_Settings.m_nReverbType].first;
if ((rvbPreset != m_currentPreset) || (bReset))
{
// Reverb output frequency is half of the dry output rate
float flOutputFrequency = (float)MixingFreq;
EnvironmentReverb rvb;
// Reset reverb parameters
m_currentPreset = rvbPreset;
I3dl2_to_Generic(rvbPreset, &rvb, flOutputFrequency,
RVBMINREFDELAY, RVBMAXREFDELAY,
RVBMINRVBDELAY, RVBMAXRVBDELAY,
( RVBDIF1L_LEN + RVBDIF1R_LEN
+ RVBDIF2L_LEN + RVBDIF2R_LEN
+ RVBDLY1L_LEN + RVBDLY1R_LEN
+ RVBDLY2L_LEN + RVBDLY2R_LEN) / 2);
// Store reverb decay time (in samples) for reverb auto-shutdown
gnReverbDecaySamples = rvb.ReverbDecaySamples;
// Room attenuation at high frequencies
int32 nRoomLP;
nRoomLP = OnePoleLowPassCoef(32768, mBToLinear(rvb.RoomHF), 5000, static_cast<double>(flOutputFrequency));
g_RefDelay.nCoeffs.c.l = (int16)nRoomLP;
g_RefDelay.nCoeffs.c.r = (int16)nRoomLP;
// Pre-Diffusion factor (for both reflections and late reverb)
g_RefDelay.nPreDifCoeffs.c.l = (int16)(rvb.PreDiffusion*2);
g_RefDelay.nPreDifCoeffs.c.r = (int16)(rvb.PreDiffusion*2);
// Setup individual reflections delay and gains
for (uint32 iRef=0; iRef<8; iRef++)
{
SWRvbReflection &ref = g_RefDelay.Reflections[iRef];
ref.DelayDest = rvb.Reflections[iRef].Delay;
ref.Delay = ref.DelayDest;
ref.Gains[0].c.l = rvb.Reflections[iRef].GainLL;
ref.Gains[0].c.r = rvb.Reflections[iRef].GainRL;
ref.Gains[1].c.l = rvb.Reflections[iRef].GainLR;
ref.Gains[1].c.r = rvb.Reflections[iRef].GainRR;
}
g_LateReverb.nReverbDelay = rvb.ReverbDelay;
// Reflections Master Gain
uint32 lReflectionsGain = 0;
if (rvb.ReflectionsLevel > -9000)
{
lReflectionsGain = mBToLinear(32768, rvb.ReflectionsLevel);
}
g_RefDelay.lMasterGain = lReflectionsGain;
// Late reverb master gain
uint32 lReverbGain = 0;
if (rvb.ReverbLevel > -9000)
{
lReverbGain = mBToLinear(32768, rvb.ReverbLevel);
}
g_LateReverb.lMasterGain = lReverbGain;
// Late reverb diffusion
uint32 nTailDiffusion = rvb.TankDiffusion;
if (nTailDiffusion > 0x7f00) nTailDiffusion = 0x7f00;
g_LateReverb.nDifCoeffs[0].c.l = (int16)nTailDiffusion;
g_LateReverb.nDifCoeffs[0].c.r = (int16)nTailDiffusion;
g_LateReverb.nDifCoeffs[1].c.l = (int16)nTailDiffusion;
g_LateReverb.nDifCoeffs[1].c.r = (int16)nTailDiffusion;
g_LateReverb.Dif2InGains[0].c.l = 0x7000;
g_LateReverb.Dif2InGains[0].c.r = 0x1000;
g_LateReverb.Dif2InGains[1].c.l = 0x1000;
g_LateReverb.Dif2InGains[1].c.r = 0x7000;
// Late reverb decay time
int32 nReverbDecay = rvb.ReverbDecay;
Limit(nReverbDecay, 0, 0x7ff0);
g_LateReverb.nDecayDC[0].c.l = (int16)nReverbDecay;
g_LateReverb.nDecayDC[0].c.r = 0;
g_LateReverb.nDecayDC[1].c.l = 0;
g_LateReverb.nDecayDC[1].c.r = (int16)nReverbDecay;
// Late Reverb Decay HF
float fReverbDamping = rvb.flReverbDamping * rvb.flReverbDamping;
int32 nDampingLowPass;
nDampingLowPass = OnePoleLowPassCoef(32768, static_cast<double>(fReverbDamping), 5000, static_cast<double>(flOutputFrequency));
Limit(nDampingLowPass, 0x100, 0x7f00);
g_LateReverb.nDecayLP[0].c.l = (int16)nDampingLowPass;
g_LateReverb.nDecayLP[0].c.r = 0;
g_LateReverb.nDecayLP[1].c.l = 0;
g_LateReverb.nDecayLP[1].c.r = (int16)nDampingLowPass;
}
if (bReset)
{
gnReverbSamples = 0;
Shutdown(gnRvbROfsVol, gnRvbLOfsVol);
}
// Wait at least 5 seconds before shutting down the reverb
if (gnReverbDecaySamples < MixingFreq*5)
{
gnReverbDecaySamples = MixingFreq*5;
}
}
void CReverb::TouchReverbSendBuffer(MixSampleInt *MixReverbBuffer, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 nSamples)
{
if(!gnReverbSend)
{ // and we did not clear the buffer yet, do it now because we will get new data
StereoFill(MixReverbBuffer, nSamples, gnRvbROfsVol, gnRvbLOfsVol);
}
gnReverbSend = true; // we will have to process reverb
}
// Reverb
void CReverb::Process(MixSampleInt *MixSoundBuffer, MixSampleInt *MixReverbBuffer, MixSampleInt &gnRvbROfsVol, MixSampleInt &gnRvbLOfsVol, uint32 nSamples)
{
if((!gnReverbSend) && (!gnReverbSamples))
{ // no data is sent to reverb and reverb decayed completely
return;
}
if(!gnReverbSend)
{ // no input data in MixReverbBuffer, so the buffer got not cleared in TouchReverbSendBuffer(), do it now for decay
StereoFill(MixReverbBuffer, nSamples, gnRvbROfsVol, gnRvbLOfsVol);
}
uint32 nIn, nOut;
// Dynamically adjust reverb master gains
int32 lMasterGain;
lMasterGain = ((g_RefDelay.lMasterGain * m_Settings.m_nReverbDepth) >> 4);
if (lMasterGain > 0x7fff) lMasterGain = 0x7fff;
g_RefDelay.ReflectionsGain.c.l = (int16)lMasterGain;
g_RefDelay.ReflectionsGain.c.r = (int16)lMasterGain;
lMasterGain = ((g_LateReverb.lMasterGain * m_Settings.m_nReverbDepth) >> 4);
if (lMasterGain > 0x10000) lMasterGain = 0x10000;
g_LateReverb.RvbOutGains[0].c.l = (int16)((lMasterGain+0x7f) >> 3); // l->l
g_LateReverb.RvbOutGains[0].c.r = (int16)((lMasterGain+0xff) >> 4); // r->l
g_LateReverb.RvbOutGains[1].c.l = (int16)((lMasterGain+0xff) >> 4); // l->r
g_LateReverb.RvbOutGains[1].c.r = (int16)((lMasterGain+0x7f) >> 3); // r->r
// Process Dry/Wet Mix
int32 lMaxRvbGain = (g_RefDelay.lMasterGain > g_LateReverb.lMasterGain) ? g_RefDelay.lMasterGain : g_LateReverb.lMasterGain;
if (lMaxRvbGain > 32768) lMaxRvbGain = 32768;
int32 lDryVol = (36 - m_Settings.m_nReverbDepth)>>1;
if (lDryVol < 8) lDryVol = 8;
if (lDryVol > 16) lDryVol = 16;
lDryVol = 16 - (((16-lDryVol) * lMaxRvbGain) >> 15);
ReverbDryMix(MixSoundBuffer, MixReverbBuffer, lDryVol, nSamples);
// Downsample 2x + 1st stage of lowpass filter
nIn = ReverbProcessPreFiltering1x(MixReverbBuffer, nSamples);
nOut = nIn;
// Main reverb processing: split into small chunks (needed for short reverb delays)
// Reverb Input + Low-Pass stage #2 + Pre-diffusion
if (nIn > 0) ProcessPreDelay(&g_RefDelay, MixReverbBuffer, nIn);
// Process Reverb Reflections and Late Reverberation
int32 *pRvbOut = MixReverbBuffer;
uint32 nRvbSamples = nOut;
while (nRvbSamples > 0)
{
uint32 nPosRef = g_RefDelay.nRefOutPos & SNDMIX_REVERB_DELAY_MASK;
uint32 nPosRvb = (nPosRef - g_LateReverb.nReverbDelay) & SNDMIX_REVERB_DELAY_MASK;
uint32 nmax1 = (SNDMIX_REVERB_DELAY_MASK+1) - nPosRef;
uint32 nmax2 = (SNDMIX_REVERB_DELAY_MASK+1) - nPosRvb;
nmax1 = (nmax1 < nmax2) ? nmax1 : nmax2;
uint32 n = nRvbSamples;
if (n > nmax1) n = nmax1;
if (n > 64) n = 64;
// Reflections output + late reverb delay
ProcessReflections(&g_RefDelay, &g_RefDelay.RefOut[nPosRef], pRvbOut, n);
// Late Reverberation
ProcessLateReverb(&g_LateReverb, &g_RefDelay.RefOut[nPosRvb], pRvbOut, n);
// Update delay positions
g_RefDelay.nRefOutPos = (g_RefDelay.nRefOutPos + n) & SNDMIX_REVERB_DELAY_MASK;
g_RefDelay.nDelayPos = (g_RefDelay.nDelayPos + n) & SNDMIX_REFLECTIONS_DELAY_MASK;
pRvbOut += n*2;
nRvbSamples -= n;
}
// Adjust nDelayPos, in case nIn != nOut
g_RefDelay.nDelayPos = (g_RefDelay.nDelayPos - nOut + nIn) & SNDMIX_REFLECTIONS_DELAY_MASK;
// Upsample 2x
ReverbProcessPostFiltering1x(MixReverbBuffer, MixSoundBuffer, nSamples);
// Automatically shut down if needed
if(gnReverbSend) gnReverbSamples = gnReverbDecaySamples; // reset decay counter
else if(gnReverbSamples > nSamples) gnReverbSamples -= nSamples; // decay
else // decayed
{
Shutdown(gnRvbROfsVol, gnRvbLOfsVol);
gnReverbSamples = 0;
}
gnReverbSend = false; // no input data in MixReverbBuffer
}
void CReverb::ReverbDryMix(int32 * MPT_RESTRICT pDry, int32 * MPT_RESTRICT pWet, int lDryVol, uint32 nSamples)
{
for (uint32 i=0; i<nSamples; i++)
{
pDry[i*2] += (pWet[i*2]>>4) * lDryVol;
pDry[i*2+1] += (pWet[i*2+1]>>4) * lDryVol;
}
}
uint32 CReverb::ReverbProcessPreFiltering2x(int32 * MPT_RESTRICT pWet, uint32 nSamples)
{
uint32 nOutSamples = 0;
int lowpass = g_RefDelay.nCoeffs.c.l;
int y1_l = g_nLastRvbIn_yl, y1_r = g_nLastRvbIn_yr;
uint32 n = nSamples;
if (g_bLastInPresent)
{
int x1_l = g_nLastRvbIn_xl, x1_r = g_nLastRvbIn_xr;
int x2_l = pWet[0], x2_r = pWet[1];
x1_l = (x1_l+x2_l)>>13;
x1_r = (x1_r+x2_r)>>13;
y1_l = x1_l + (((x1_l - y1_l)*lowpass)>>15);
y1_r = x1_r + (((x1_r - y1_r)*lowpass)>>15);
pWet[0] = y1_l;
pWet[1] = y1_r;
pWet+=2;
n--;
nOutSamples = 1;
g_bLastInPresent = false;
}
if (n & 1)
{
n--;
g_nLastRvbIn_xl = pWet[n*2];
g_nLastRvbIn_xr = pWet[n*2+1];
g_bLastInPresent = true;
}
n >>= 1;
for (uint32 i=0; i<n; i++)
{
int x1_l = pWet[i*4];
int x2_l = pWet[i*4+2];
x1_l = (x1_l+x2_l)>>13;
int x1_r = pWet[i*4+1];
int x2_r = pWet[i*4+3];
x1_r = (x1_r+x2_r)>>13;
y1_l = x1_l + (((x1_l - y1_l)*lowpass)>>15);
y1_r = x1_r + (((x1_r - y1_r)*lowpass)>>15);
pWet[i*2] = y1_l;
pWet[i*2+1] = y1_r;
}
g_nLastRvbIn_yl = y1_l;
g_nLastRvbIn_yr = y1_r;
return nOutSamples + n;
}
uint32 CReverb::ReverbProcessPreFiltering1x(int32 * MPT_RESTRICT pWet, uint32 nSamples)
{
int lowpass = g_RefDelay.nCoeffs.c.l;
int y1_l = g_nLastRvbIn_yl, y1_r = g_nLastRvbIn_yr;
for (uint32 i=0; i<nSamples; i++)
{
int x_l = pWet[i*2] >> 12;
int x_r = pWet[i*2+1] >> 12;
y1_l = x_l + (((x_l - y1_l)*lowpass)>>15);
y1_r = x_r + (((x_r - y1_r)*lowpass)>>15);
pWet[i*2] = y1_l;
pWet[i*2+1] = y1_r;
}
g_nLastRvbIn_yl = y1_l;
g_nLastRvbIn_yr = y1_r;
return nSamples;
}
void CReverb::ReverbProcessPostFiltering2x(const int32 * MPT_RESTRICT pRvb, int32 * MPT_RESTRICT pDry, uint32 nSamples)
{
uint32 n0 = nSamples, n;
int x1_l = g_nLastRvbOut_xl, x1_r = g_nLastRvbOut_xr;
if (g_bLastOutPresent)
{
pDry[0] += x1_l;
pDry[1] += x1_r;
pDry += 2;
n0--;
g_bLastOutPresent = false;
}
n = n0 >> 1;
for (uint32 i=0; i<n; i++)
{
int x_l = pRvb[i*2], x_r = pRvb[i*2+1];
pDry[i*4] += (x_l + x1_l)>>1;
pDry[i*4+1] += (x_r + x1_r)>>1;
pDry[i*4+2] += x_l;
pDry[i*4+3] += x_r;
x1_l = x_l;
x1_r = x_r;
}
if (n0 & 1)
{
int x_l = pRvb[n*2], x_r = pRvb[n*2+1];
pDry[n*4] += (x_l + x1_l)>>1;
pDry[n*4+1] += (x_r + x1_r)>>1;
x1_l = x_l;
x1_r = x_r;
g_bLastOutPresent = true;
}
g_nLastRvbOut_xl = x1_l;
g_nLastRvbOut_xr = x1_r;
}
#define DCR_AMOUNT 9
// Stereo Add + DC removal
void CReverb::ReverbProcessPostFiltering1x(const int32 * MPT_RESTRICT pRvb, int32 * MPT_RESTRICT pDry, uint32 nSamples)
{
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2) && defined(MPT_ARCH_INTRINSICS_X86_SSE2)
if(CPU::HasFeatureSet(CPU::feature::sse2) && CPU::HasModesEnabled(CPU::mode::xmm128sse))
{
mpt::arch::feature_fence_guard arch_feature_guard;
__m128i nDCRRvb_Y1 = Load64SSE(gnDCRRvb_Y1);
__m128i nDCRRvb_X1 = Load64SSE(gnDCRRvb_X1);
__m128i in = _mm_set1_epi32(0);
while(nSamples--)
{
in = Load64SSE(pRvb);
pRvb += 2;
// x(n-1) - x(n)
__m128i diff = _mm_sub_epi32(nDCRRvb_X1, in);
nDCRRvb_X1 = _mm_add_epi32(nDCRRvb_Y1, _mm_sub_epi32(_mm_srai_epi32(diff, DCR_AMOUNT + 1), diff));
__m128i out = _mm_add_epi32(Load64SSE(pDry), nDCRRvb_X1);
nDCRRvb_Y1 = _mm_sub_epi32(nDCRRvb_X1, _mm_srai_epi32(nDCRRvb_X1, DCR_AMOUNT));
nDCRRvb_X1 = in;
Store64SSE(pDry, out);
pDry += 2;
}
Store64SSE(gnDCRRvb_X1, in);
Store64SSE(gnDCRRvb_Y1, nDCRRvb_Y1);
return;
}
#endif
int32 X1L = gnDCRRvb_X1[0], X1R = gnDCRRvb_X1[1];
int32 Y1L = gnDCRRvb_Y1[0], Y1R = gnDCRRvb_Y1[1];
int32 inL = 0, inR = 0;
while(nSamples--)
{
inL = pRvb[0];
inR = pRvb[1];
pRvb += 2;
int32 outL = pDry[0], outR = pDry[1];
// x(n-1) - x(n)
X1L -= inL;
X1R -= inR;
X1L = X1L / (1 << (DCR_AMOUNT + 1)) - X1L;
X1R = X1R / (1 << (DCR_AMOUNT + 1)) - X1R;
Y1L += X1L;
Y1R += X1R;
// add to dry mix
outL += Y1L;
outR += Y1R;
Y1L -= Y1L / (1 << DCR_AMOUNT);
Y1R -= Y1R / (1 << DCR_AMOUNT);
X1L = inL;
X1R = inR;
pDry[0] = outL;
pDry[1] = outR;
pDry += 2;
}
gnDCRRvb_Y1[0] = Y1L;
gnDCRRvb_Y1[1] = Y1R;
gnDCRRvb_X1[0] = inL;
gnDCRRvb_X1[1] = inR;
}
void CReverb::ReverbDCRemoval(int32 * MPT_RESTRICT pBuffer, uint32 nSamples)
{
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2) && defined(MPT_ARCH_INTRINSICS_X86_SSE2)
if(CPU::HasFeatureSet(CPU::feature::sse2) && CPU::HasModesEnabled(CPU::mode::xmm128sse))
{
mpt::arch::feature_fence_guard arch_feature_guard;
__m128i nDCRRvb_Y1 = Load64SSE(gnDCRRvb_Y1);
__m128i nDCRRvb_X1 = Load64SSE(gnDCRRvb_X1);
while(nSamples--)
{
__m128i in = Load64SSE(pBuffer);
__m128i diff = _mm_sub_epi32(nDCRRvb_X1, in);
__m128i out = _mm_add_epi32(nDCRRvb_Y1, _mm_sub_epi32(_mm_srai_epi32(diff, DCR_AMOUNT + 1), diff));
Store64SSE(pBuffer, out);
pBuffer += 2;
nDCRRvb_Y1 = _mm_sub_epi32(out, _mm_srai_epi32(out, DCR_AMOUNT));
nDCRRvb_X1 = in;
}
Store64SSE(gnDCRRvb_X1, nDCRRvb_X1);
Store64SSE(gnDCRRvb_Y1, nDCRRvb_Y1);
return;
}
#endif
int32 X1L = gnDCRRvb_X1[0], X1R = gnDCRRvb_X1[1];
int32 Y1L = gnDCRRvb_Y1[0], Y1R = gnDCRRvb_Y1[1];
int32 inL = 0, inR = 0;
while(nSamples--)
{
inL = pBuffer[0];
inR = pBuffer[1];
// x(n-1) - x(n)
X1L -= inL;
X1R -= inR;
X1L = X1L / (1 << (DCR_AMOUNT + 1)) - X1L;
X1R = X1R / (1 << (DCR_AMOUNT + 1)) - X1R;
Y1L += X1L;
Y1R += X1R;
pBuffer[0] = Y1L;
pBuffer[1] = Y1R;
pBuffer += 2;
Y1L -= Y1L / (1 << DCR_AMOUNT);
Y1R -= Y1R / (1 << DCR_AMOUNT);
X1L = inL;
X1R = inR;
}
gnDCRRvb_Y1[0] = Y1L;
gnDCRRvb_Y1[1] = Y1R;
gnDCRRvb_X1[0] = inL;
gnDCRRvb_X1[1] = inR;
}
//////////////////////////////////////////////////////////////////////////
//
// Pre-Delay:
//
// 1. Saturate and low-pass the reverb input (stage 2 of roomHF)
// 2. Process pre-diffusion
// 3. Insert the result in the reflections delay buffer
//
// Save some typing
static MPT_FORCEINLINE int32 Clamp16(int32 x) { return Clamp(x, std::numeric_limits<int16>::min(), std::numeric_limits<int16>::max()); }
void CReverb::ProcessPreDelay(SWRvbRefDelay * MPT_RESTRICT pPreDelay, const int32 * MPT_RESTRICT pIn, uint32 nSamples)
{
uint32 preDifPos = pPreDelay->nPreDifPos;
uint32 delayPos = pPreDelay->nDelayPos - 1;
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2) && defined(MPT_ARCH_INTRINSICS_X86_SSE2)
if(CPU::HasFeatureSet(CPU::feature::sse2) && CPU::HasModesEnabled(CPU::mode::xmm128sse))
{
mpt::arch::feature_fence_guard arch_feature_guard;
__m128i coeffs = _mm_cvtsi32_si128(pPreDelay->nCoeffs.lr);
__m128i history = _mm_cvtsi32_si128(pPreDelay->History.lr);
__m128i preDifCoeffs = _mm_cvtsi32_si128(pPreDelay->nPreDifCoeffs.lr);
while(nSamples--)
{
__m128i in32 = Load64SSE(pIn); // 16-bit unsaturated reverb input [ r | l ]
__m128i inSat = _mm_packs_epi32(in32, in32); // [ r | l | r | l ] (16-bit saturated)
pIn += 2;
// Low-pass
__m128i lp = _mm_mulhi_epi16(_mm_subs_epi16(history, inSat), coeffs);
__m128i preDif = _mm_cvtsi32_si128(pPreDelay->PreDifBuffer[preDifPos].lr);
history = _mm_adds_epi16(_mm_adds_epi16(lp, lp), inSat);
// Pre-Diffusion
preDifPos = (preDifPos + 1) & SNDMIX_PREDIFFUSION_DELAY_MASK;
delayPos = (delayPos + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
__m128i preDif2 = _mm_subs_epi16(history, _mm_mulhi_epi16(preDif, preDifCoeffs));
pPreDelay->PreDifBuffer[preDifPos].lr = _mm_cvtsi128_si32(preDif2);
pPreDelay->RefDelayBuffer[delayPos].lr = _mm_cvtsi128_si32(_mm_adds_epi16(_mm_mulhi_epi16(preDifCoeffs, preDif2), preDif));
}
pPreDelay->nPreDifPos = preDifPos;
pPreDelay->History.lr = _mm_cvtsi128_si32(history);
return;
}
#endif
const int32 coeffsL = pPreDelay->nCoeffs.c.l, coeffsR = pPreDelay->nCoeffs.c.r;
const int32 preDifCoeffsL = pPreDelay->nPreDifCoeffs.c.l, preDifCoeffsR = pPreDelay->nPreDifCoeffs.c.r;
int16 historyL = pPreDelay->History.c.l, historyR = pPreDelay->History.c.r;
while(nSamples--)
{
int32 inL = Clamp16(pIn[0]);
int32 inR = Clamp16(pIn[1]);
pIn += 2;
// Low-pass
int32 lpL = (Clamp16(historyL - inL) * coeffsL) / 65536;
int32 lpR = (Clamp16(historyR - inR) * coeffsR) / 65536;
historyL = mpt::saturate_cast<int16>(Clamp16(lpL + lpL) + inL);
historyR = mpt::saturate_cast<int16>(Clamp16(lpR + lpR) + inR);
// Pre-Diffusion
int32 preDifL = pPreDelay->PreDifBuffer[preDifPos].c.l;
int32 preDifR = pPreDelay->PreDifBuffer[preDifPos].c.r;
preDifPos = (preDifPos + 1) & SNDMIX_PREDIFFUSION_DELAY_MASK;
delayPos = (delayPos + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
int16 preDif2L = mpt::saturate_cast<int16>(historyL - preDifL * preDifCoeffsL / 65536);
int16 preDif2R = mpt::saturate_cast<int16>(historyR - preDifR * preDifCoeffsR / 65536);
pPreDelay->PreDifBuffer[preDifPos].c.l = preDif2L;
pPreDelay->PreDifBuffer[preDifPos].c.r = preDif2R;
pPreDelay->RefDelayBuffer[delayPos].c.l = mpt::saturate_cast<int16>(preDifCoeffsL * preDif2L / 65536 + preDifL);
pPreDelay->RefDelayBuffer[delayPos].c.r = mpt::saturate_cast<int16>(preDifCoeffsR * preDif2R / 65536 + preDifR);
}
pPreDelay->nPreDifPos = preDifPos;
pPreDelay->History.c.l = historyL;
pPreDelay->History.c.r = historyR;
}
////////////////////////////////////////////////////////////////////
//
// ProcessReflections:
// First stage:
// - process 4 reflections, output to pRefOut
// - output results to pRefOut
// Second stage:
// - process another 3 reflections
// - sum with pRefOut
// - apply reflections master gain and accumulate in the given output
//
void CReverb::ProcessReflections(SWRvbRefDelay * MPT_RESTRICT pPreDelay, LR16 * MPT_RESTRICT pRefOut, int32 * MPT_RESTRICT pOut, uint32 nSamples)
{
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2) && defined(MPT_ARCH_INTRINSICS_X86_SSE2)
if(CPU::HasFeatureSet(CPU::feature::sse2) && CPU::HasModesEnabled(CPU::mode::xmm128sse))
{
mpt::arch::feature_fence_guard arch_feature_guard;
union
{
__m128i xmm;
int16 i[8];
} pos;
const LR16 *refDelayBuffer = pPreDelay->RefDelayBuffer;
#define GETDELAY(x) static_cast<int16>(pPreDelay->Reflections[x].Delay)
__m128i delayPos = _mm_set_epi16(GETDELAY(7), GETDELAY(6), GETDELAY(5), GETDELAY(4), GETDELAY(3), GETDELAY(2), GETDELAY(1), GETDELAY(0));
#undef GETDELAY
delayPos = _mm_sub_epi16(_mm_set1_epi16(static_cast<int16>(pPreDelay->nDelayPos - 1)), delayPos);
__m128i gain12 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[0].Gains), Load64SSE(pPreDelay->Reflections[1].Gains));
__m128i gain34 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[2].Gains), Load64SSE(pPreDelay->Reflections[3].Gains));
__m128i gain56 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[4].Gains), Load64SSE(pPreDelay->Reflections[5].Gains));
__m128i gain78 = _mm_unpacklo_epi64(Load64SSE(pPreDelay->Reflections[6].Gains), Load64SSE(pPreDelay->Reflections[7].Gains));
// For 28-bit final output: 16+15-3 = 28
__m128i refGain = _mm_srai_epi32(_mm_set_epi32(0, 0, pPreDelay->ReflectionsGain.c.r, pPreDelay->ReflectionsGain.c.l), 3);
__m128i delayInc = _mm_set1_epi16(1), delayMask = _mm_set1_epi16(SNDMIX_REFLECTIONS_DELAY_MASK);
while(nSamples--)
{
delayPos = _mm_and_si128(_mm_add_epi16(delayInc, delayPos), delayMask);
_mm_storeu_si128(&pos.xmm, delayPos);
__m128i ref12 = _mm_set_epi32(refDelayBuffer[pos.i[1]].lr, refDelayBuffer[pos.i[1]].lr, refDelayBuffer[pos.i[0]].lr, refDelayBuffer[pos.i[0]].lr);
__m128i ref34 = _mm_set_epi32(refDelayBuffer[pos.i[3]].lr, refDelayBuffer[pos.i[3]].lr, refDelayBuffer[pos.i[2]].lr, refDelayBuffer[pos.i[2]].lr);
__m128i ref56 = _mm_set_epi32(refDelayBuffer[pos.i[5]].lr, refDelayBuffer[pos.i[5]].lr, refDelayBuffer[pos.i[4]].lr, refDelayBuffer[pos.i[4]].lr);
__m128i ref78 = _mm_set_epi32(0, 0, refDelayBuffer[pos.i[6]].lr, refDelayBuffer[pos.i[6]].lr);
// First stage
__m128i refOut1 = _mm_add_epi32(_mm_madd_epi16(ref12, gain12), _mm_madd_epi16(ref34, gain34));
refOut1 = _mm_srai_epi32(_mm_add_epi32(refOut1, _mm_shuffle_epi32(refOut1, _MM_SHUFFLE(1, 0, 3, 2))), 15);
// Second stage
__m128i refOut2 = _mm_add_epi32(_mm_madd_epi16(ref56, gain56), _mm_madd_epi16(ref78, gain78));
refOut2 = _mm_srai_epi32(_mm_add_epi32(refOut2, _mm_shuffle_epi32(refOut2, _MM_SHUFFLE(1, 0, 3, 2))), 15);
// Saturate to 16-bit and sum stages
__m128i refOut = _mm_adds_epi16(_mm_packs_epi32(refOut1, refOut1), _mm_packs_epi32(refOut2, refOut2));
pRefOut->lr = _mm_cvtsi128_si32(refOut);
pRefOut++;
__m128i out = _mm_madd_epi16(_mm_unpacklo_epi16(refOut, refOut), refGain); // Apply reflections gain
// At this, point, this is the only output of the reverb
Store64SSE(pOut, out);
pOut += 2;
}
return;
}
#endif
int pos[7];
for(int i = 0; i < 7; i++)
pos[i] = pPreDelay->nDelayPos - pPreDelay->Reflections[i].Delay - 1;
// For 28-bit final output: 16+15-3 = 28
int16 refGain = pPreDelay->ReflectionsGain.c.l / (1 << 3);
while(nSamples--)
{
// First stage
int32 refOutL = 0, refOutR = 0;
for(int i = 0; i < 4; i++)
{
pos[i] = (pos[i] + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
int16 refL = pPreDelay->RefDelayBuffer[pos[i]].c.l, refR = pPreDelay->RefDelayBuffer[pos[i]].c.r;
refOutL += refL * pPreDelay->Reflections[i].Gains[0].c.l + refR * pPreDelay->Reflections[i].Gains[0].c.r;
refOutR += refL * pPreDelay->Reflections[i].Gains[1].c.l + refR * pPreDelay->Reflections[i].Gains[1].c.r;
}
int16 stage1l = mpt::saturate_cast<int16>(refOutL / (1 << 15));
int16 stage1r = mpt::saturate_cast<int16>(refOutR / (1 << 15));
// Second stage
refOutL = 0;
refOutR = 0;
for(int i = 4; i < 7; i++)
{
pos[i] = (pos[i] + 1) & SNDMIX_REFLECTIONS_DELAY_MASK;
int16 refL = pPreDelay->RefDelayBuffer[pos[i]].c.l, refR = pPreDelay->RefDelayBuffer[pos[i]].c.r;
refOutL += refL * pPreDelay->Reflections[i].Gains[0].c.l + refR * pPreDelay->Reflections[i].Gains[0].c.r;
refOutR += refL * pPreDelay->Reflections[i].Gains[1].c.l + refR * pPreDelay->Reflections[i].Gains[1].c.r;
}
pOut[0] = (pRefOut->c.l = mpt::saturate_cast<int16>(stage1l + refOutL / (1 << 15))) * refGain;
pOut[1] = (pRefOut->c.r = mpt::saturate_cast<int16>(stage1r + refOutR / (1 << 15))) * refGain;
pRefOut++;
pOut += 2;
}
}
//////////////////////////////////////////////////////////////////////////
//
// Late reverberation (with SW reflections)
//
void CReverb::ProcessLateReverb(SWLateReverb * MPT_RESTRICT pReverb, LR16 * MPT_RESTRICT pRefOut, int32 * MPT_RESTRICT pMixOut, uint32 nSamples)
{
// Calculate delay line offset from current delay position
#define DELAY_OFFSET(x) ((delayPos - (x)) & RVBDLY_MASK)
#if defined(MPT_WANT_ARCH_INTRINSICS_X86_SSE2) && defined(MPT_ARCH_INTRINSICS_X86_SSE2)
if(CPU::HasFeatureSet(CPU::feature::sse2) && CPU::HasModesEnabled(CPU::mode::xmm128sse))
{
mpt::arch::feature_fence_guard arch_feature_guard;
int delayPos = pReverb->nDelayPos & RVBDLY_MASK;
__m128i rvbOutGains = Load64SSE(pReverb->RvbOutGains);
__m128i difCoeffs = Load64SSE(pReverb->nDifCoeffs);
__m128i decayLP = Load64SSE(pReverb->nDecayLP);
__m128i lpHistory = Load64SSE(pReverb->LPHistory);
while(nSamples--)
{
__m128i refIn = _mm_cvtsi32_si128(pRefOut->lr); // 16-bit stereo input
pRefOut++;
__m128i delay2 = _mm_unpacklo_epi32(
_mm_cvtsi32_si128(pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].lr),
_mm_cvtsi32_si128(pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].lr));
// Unsigned to avoid sign extension
uint16 diff1L = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1L_LEN)].c.l;
uint16 diff1R = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1R_LEN)].c.r;
int32 diffusion1 = diff1L | (diff1R << 16); // diffusion1 history
uint16 diff2L = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2L_LEN)].c.l;
uint16 diff2R = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2R_LEN)].c.r;
int32 diffusion2 = diff2L | (diff2R << 16); // diffusion2 history
__m128i lpDecay = _mm_mulhi_epi16(_mm_subs_epi16(lpHistory, delay2), decayLP);
lpHistory = _mm_adds_epi16(_mm_adds_epi16(lpDecay, lpDecay), delay2); // Low-passed decay
// Apply decay gain
__m128i histDecay = _mm_srai_epi32(_mm_madd_epi16(Load64SSE(pReverb->nDecayDC), lpHistory), 15);
__m128i histDecayPacked = _mm_shuffle_epi32(_mm_packs_epi32(histDecay, histDecay), _MM_SHUFFLE(2, 0, 2, 0));
__m128i histDecayIn = _mm_adds_epi16(histDecayPacked, _mm_srai_epi16(_mm_unpacklo_epi32(refIn, refIn), 2));
__m128i histDecayInDiff = _mm_subs_epi16(histDecayIn, _mm_mulhi_epi16(_mm_cvtsi32_si128(diffusion1), difCoeffs));
pReverb->Diffusion1[delayPos].lr = _mm_cvtsi128_si32(histDecayInDiff);
__m128i delay1Out = _mm_adds_epi16(_mm_mulhi_epi16(difCoeffs, histDecayInDiff), _mm_cvtsi32_si128(diffusion1));
// Insert the diffusion output in the reverb delay line
pReverb->Delay1[delayPos].lr = _mm_cvtsi128_si32(delay1Out);
__m128i histDecayInDelay = _mm_adds_epi16(histDecayIn, _mm_unpacklo_epi32(delay1Out, delay1Out));
// Input to second diffuser
__m128i delay1 = _mm_unpacklo_epi32(
_mm_cvtsi32_si128(pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].lr),
_mm_cvtsi32_si128(pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].lr));
__m128i delay1Gains = _mm_srai_epi32(_mm_madd_epi16(delay1, Load64SSE(pReverb->Dif2InGains)), 15);
__m128i delay1GainsSat = _mm_shuffle_epi32(_mm_packs_epi32(delay1Gains, delay1Gains), _MM_SHUFFLE(2, 0, 2, 0));
__m128i histDelay1 = _mm_subs_epi16(_mm_adds_epi16(histDecayInDelay, delay1), delay1GainsSat); // accumulate with reverb output
__m128i diff2out = _mm_subs_epi16(delay1GainsSat, _mm_mulhi_epi16(_mm_cvtsi32_si128(diffusion2), difCoeffs));
__m128i diff2outCoeffs = _mm_mulhi_epi16(difCoeffs, diff2out);
pReverb->Diffusion2[delayPos].lr = _mm_cvtsi128_si32(diff2out);
__m128i mixOut = Load64SSE(pMixOut);
__m128i delay2out = _mm_adds_epi16(diff2outCoeffs, _mm_cvtsi32_si128(diffusion2));
pReverb->Delay2[delayPos].lr = _mm_cvtsi128_si32(delay2out);
delayPos = (delayPos + 1) & RVBDLY_MASK;
// Accumulate with reverb output
__m128i out = _mm_add_epi32(_mm_madd_epi16(_mm_adds_epi16(histDelay1, delay2out), rvbOutGains), mixOut);
Store64SSE(pMixOut, out);
pMixOut += 2;
}
Store64SSE(pReverb->LPHistory, lpHistory);
pReverb->nDelayPos = delayPos;
return;
}
#endif
int delayPos = pReverb->nDelayPos & RVBDLY_MASK;
while(nSamples--)
{
int16 refInL = pRefOut->c.l, refInR = pRefOut->c.r;
pRefOut++;
int32 delay2LL = pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].c.l, delay2LR = pReverb->Delay2[DELAY_OFFSET(RVBDLY2L_LEN)].c.r;
int32 delay2RL = pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].c.l, delay2RR = pReverb->Delay2[DELAY_OFFSET(RVBDLY2R_LEN)].c.r;
int32 diff1L = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1L_LEN)].c.l;
int32 diff1R = pReverb->Diffusion1[DELAY_OFFSET(RVBDIF1R_LEN)].c.r;
int32 diff2L = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2L_LEN)].c.l;
int32 diff2R = pReverb->Diffusion2[DELAY_OFFSET(RVBDIF2R_LEN)].c.r;
int32 lpDecayLL = Clamp16(pReverb->LPHistory[0].c.l - delay2LL) * pReverb->nDecayLP[0].c.l / 65536;
int32 lpDecayLR = Clamp16(pReverb->LPHistory[0].c.r - delay2LR) * pReverb->nDecayLP[0].c.r / 65536;
int32 lpDecayRL = Clamp16(pReverb->LPHistory[1].c.l - delay2RL) * pReverb->nDecayLP[1].c.l / 65536;
int32 lpDecayRR = Clamp16(pReverb->LPHistory[1].c.r - delay2RR) * pReverb->nDecayLP[1].c.r / 65536;
// Low-passed decay
pReverb->LPHistory[0].c.l = mpt::saturate_cast<int16>(Clamp16(lpDecayLL + lpDecayLL) + delay2LL);
pReverb->LPHistory[0].c.r = mpt::saturate_cast<int16>(Clamp16(lpDecayLR + lpDecayLR) + delay2LR);
pReverb->LPHistory[1].c.l = mpt::saturate_cast<int16>(Clamp16(lpDecayRL + lpDecayRL) + delay2RL);
pReverb->LPHistory[1].c.r = mpt::saturate_cast<int16>(Clamp16(lpDecayRR + lpDecayRR) + delay2RR);
// Apply decay gain
int32 histDecayL = Clamp16((int32)pReverb->nDecayDC[0].c.l * pReverb->LPHistory[0].c.l / (1 << 15));
int32 histDecayR = Clamp16((int32)pReverb->nDecayDC[1].c.r * pReverb->LPHistory[1].c.r / (1 << 15));
int32 histDecayInL = Clamp16(histDecayL + refInL / 4);
int32 histDecayInR = Clamp16(histDecayR + refInR / 4);
int32 histDecayInDiffL = Clamp16(histDecayInL - diff1L * pReverb->nDifCoeffs[0].c.l / 65536);
int32 histDecayInDiffR = Clamp16(histDecayInR - diff1R * pReverb->nDifCoeffs[0].c.r / 65536);
pReverb->Diffusion1[delayPos].c.l = static_cast<int16>(histDecayInDiffL);
pReverb->Diffusion1[delayPos].c.r = static_cast<int16>(histDecayInDiffR);
int32 delay1L = Clamp16(pReverb->nDifCoeffs[0].c.l * histDecayInDiffL / 65536 + diff1L);
int32 delay1R = Clamp16(pReverb->nDifCoeffs[0].c.r * histDecayInDiffR / 65536 + diff1R);
// Insert the diffusion output in the reverb delay line
pReverb->Delay1[delayPos].c.l = static_cast<int16>(delay1L);
pReverb->Delay1[delayPos].c.r = static_cast<int16>(delay1R);
int32 histDecayInDelayL = Clamp16(histDecayInL + delay1L);
int32 histDecayInDelayR = Clamp16(histDecayInR + delay1R);
// Input to second diffuser
int32 delay1LL = pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].c.l, delay1LR = pReverb->Delay1[DELAY_OFFSET(RVBDLY1L_LEN)].c.r;
int32 delay1RL = pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].c.l, delay1RR = pReverb->Delay1[DELAY_OFFSET(RVBDLY1R_LEN)].c.r;
int32 delay1GainsL = Clamp16((delay1LL * pReverb->Dif2InGains[0].c.l + delay1LR * pReverb->Dif2InGains[0].c.r) / (1 << 15));
int32 delay1GainsR = Clamp16((delay1RL * pReverb->Dif2InGains[1].c.l + delay1RR * pReverb->Dif2InGains[1].c.r) / (1 << 15));
// accumulate with reverb output
int32 histDelay1LL = Clamp16(Clamp16(histDecayInDelayL + delay1LL) - delay1GainsL);
int32 histDelay1LR = Clamp16(Clamp16(histDecayInDelayR + delay1LR) - delay1GainsR);
int32 histDelay1RL = Clamp16(Clamp16(histDecayInDelayL + delay1RL) - delay1GainsL);
int32 histDelay1RR = Clamp16(Clamp16(histDecayInDelayR + delay1RR) - delay1GainsR);
int32 diff2outL = Clamp16(delay1GainsL - diff2L * pReverb->nDifCoeffs[0].c.l / 65536);
int32 diff2outR = Clamp16(delay1GainsR - diff2R * pReverb->nDifCoeffs[0].c.r / 65536);
int32 diff2outCoeffsL = pReverb->nDifCoeffs[0].c.l * diff2outL / 65536;
int32 diff2outCoeffsR = pReverb->nDifCoeffs[0].c.r * diff2outR / 65536;
pReverb->Diffusion2[delayPos].c.l = static_cast<int16>(diff2outL);
pReverb->Diffusion2[delayPos].c.r = static_cast<int16>(diff2outR);
int32 delay2outL = Clamp16(diff2outCoeffsL + diff2L);
int32 delay2outR = Clamp16(diff2outCoeffsR + diff2R);
pReverb->Delay2[delayPos].c.l = static_cast<int16>(delay2outL);
pReverb->Delay2[delayPos].c.r = static_cast<int16>(delay2outR);
delayPos = (delayPos + 1) & RVBDLY_MASK;
// Accumulate with reverb output
pMixOut[0] += Clamp16(histDelay1LL + delay2outL) * pReverb->RvbOutGains[0].c.l + Clamp16(histDelay1LR + delay2outR) * pReverb->RvbOutGains[0].c.r;
pMixOut[1] += Clamp16(histDelay1RL + Clamp16(diff2outCoeffsL)) * pReverb->RvbOutGains[1].c.l + Clamp16(histDelay1RR + Clamp16(diff2outCoeffsR)) * pReverb->RvbOutGains[1].c.r;
pMixOut += 2;
}
pReverb->nDelayPos = delayPos;
#undef DELAY_OFFSET
}
#else
MPT_MSVC_WORKAROUND_LNK4221(Reverb)
#endif // NO_REVERB
OPENMPT_NAMESPACE_END
|