1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
/*
* TinyFFT.cpp
* -----------
* Purpose: A simple FFT implementation for power-of-two FFTs
* Notes : This is a C++ adaption of Ryuhei Mori's BSD 2-clause licensed TinyFFT
* available from https://github.com/ryuhei-mori/tinyfft
* Authors: Ryuhei Mori
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "TinyFFT.h"
OPENMPT_NAMESPACE_BEGIN
void TinyFFT::GenerateTwiddleFactors(uint32 i, uint32 b, std::complex<double> z)
{
if(b == 0)
w[i] = z;
else
{
GenerateTwiddleFactors(i, b >> 1, z);
GenerateTwiddleFactors(i | b, b >> 1, z * w[b]);
}
}
TinyFFT::TinyFFT(const uint32 fftSize)
: w(std::size_t(1) << (fftSize - 1))
, k(fftSize)
{
const uint32 m = 1 << k;
constexpr double PI2_ = 6.28318530717958647692;
const double arg = -PI2_ / m;
for(uint32 i = 1, j = m / 4; j; i <<= 1, j >>= 1)
{
w[i] = std::exp(I * (arg * j));
}
GenerateTwiddleFactors(0, m / 4, 1);
}
uint32 TinyFFT::Size() const noexcept
{
return 1 << k;
}
// Computes in-place FFT of size 2^k of A, result is in bit-reversed order.
void TinyFFT::FFT(std::vector<std::complex<double>> &A) const
{
MPT_ASSERT(A.size() == (std::size_t(1) << k));
const uint32 m = 1 << k;
uint32 u = 1;
uint32 v = m / 4;
if(k & 1)
{
for(uint32 j = 0; j < m / 2; j++)
{
auto Ajv = A[j + (m / 2)];
A[j + (m / 2)] = A[j] - Ajv;
A[j] += Ajv;
}
u <<= 1;
v >>= 1;
}
for(uint32 i = k & ~1; i > 0; i -= 2)
{
for(uint32 jh = 0; jh < u; jh++)
{
auto wj = w[jh << 1];
auto wj2 = w[jh];
auto wj3 = wj2 * wj;
for(uint32 j = jh << i, je = j + v; j < je; j++)
{
auto tmp0 = A[j];
auto tmp1 = wj * A[j + v];
auto tmp2 = wj2 * A[j + 2 * v];
auto tmp3 = wj3 * A[j + 3 * v];
auto ttmp0 = tmp0 + tmp2;
auto ttmp2 = tmp0 - tmp2;
auto ttmp1 = tmp1 + tmp3;
auto ttmp3 = -I * (tmp1 - tmp3);
A[j] = ttmp0 + ttmp1;
A[j + v] = ttmp0 - ttmp1;
A[j + 2 * v] = ttmp2 + ttmp3;
A[j + 3 * v] = ttmp2 - ttmp3;
}
}
u <<= 2;
v >>= 2;
}
}
// Computes in-place IFFT of size 2^k of A, input is expected to be in bit-reversed order.
void TinyFFT::IFFT(std::vector<std::complex<double>> &A) const
{
MPT_ASSERT(A.size() == (std::size_t(1) << k));
const uint32 m = 1 << k;
uint32 u = m / 4;
uint32 v = 1;
for(uint32 i = 2; i <= k; i += 2)
{
for(uint32 jh = 0; jh < u; jh++)
{
auto wj = std::conj(w[jh << 1]);
auto wj2 = std::conj(w[jh]);
auto wj3 = wj2 * wj;
for(uint32 j = jh << i, je = j + v; j < je; j++)
{
auto tmp0 = A[j];
auto tmp1 = A[j + v];
auto tmp2 = A[j + 2 * v];
auto tmp3 = A[j + 3 * v];
auto ttmp0 = tmp0 + tmp1;
auto ttmp1 = tmp0 - tmp1;
auto ttmp2 = tmp2 + tmp3;
auto ttmp3 = I * (tmp2 - tmp3);
A[j] = ttmp0 + ttmp2;
A[j + v] = wj * (ttmp1 + ttmp3);
A[j + 2 * v] = wj2 * (ttmp0 - ttmp2);
A[j + 3 * v] = wj3 * (ttmp1 - ttmp3);
}
}
u >>= 2;
v <<= 2;
}
if(k & 1)
{
for(uint32 j = 0; j < m / 2; j++)
{
auto Ajv = A[j + (m / 2)];
A[j + (m / 2)] = A[j] - Ajv;
A[j] += Ajv;
}
}
}
void TinyFFT::Normalize(std::vector<std::complex<double>> &data)
{
const double s = static_cast<double>(data.size());
for(auto &v : data)
v /= s;
}
OPENMPT_NAMESPACE_END
|