1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*
==============================================================================
This file is part of the juce_core module of the JUCE library.
Copyright (c) 2015 - ROLI Ltd.
Permission to use, copy, modify, and/or distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
------------------------------------------------------------------------------
NOTE! This permissive ISC license applies ONLY to files within the juce_core module!
All other JUCE modules are covered by a dual GPL/commercial license, so if you are
using any other modules, be sure to check that you also comply with their license.
For more details, visit www.juce.com
==============================================================================
*/
#ifndef JUCE_WEAKREFERENCE_H_INCLUDED
#define JUCE_WEAKREFERENCE_H_INCLUDED
//==============================================================================
/**
This class acts as a pointer which will automatically become null if the object
to which it points is deleted.
To accomplish this, the source object needs to cooperate by performing a couple of simple tasks.
It must embed a WeakReference::Master object, which stores a shared pointer object, and must clear
this master pointer in its destructor.
E.g.
@code
class MyObject
{
public:
MyObject()
{
// If you're planning on using your WeakReferences in a multi-threaded situation, you may choose
// to create a WeakReference to the object here in the constructor, which will pre-initialise the
// embedded object, avoiding an (extremely unlikely) race condition that could occur if multiple
// threads overlap while creating the first WeakReference to it.
}
~MyObject()
{
// This will zero all the references - you need to call this in your destructor.
masterReference.clear();
}
private:
// You need to embed a variable of this type, with the name "masterReference" inside your object. If the
// variable is not public, you should make your class a friend of WeakReference<MyObject> so that the
// WeakReference class can access it.
WeakReference<MyObject>::Master masterReference;
friend class WeakReference<MyObject>;
};
// Here's an example of using a pointer..
MyObject* n = new MyObject();
WeakReference<MyObject> myObjectRef = n;
MyObject* pointer1 = myObjectRef; // returns a valid pointer to 'n'
delete n;
MyObject* pointer2 = myObjectRef; // returns a null pointer
@endcode
@see WeakReference::Master
*/
template <class ObjectType, class ReferenceCountingType = ReferenceCountedObject>
class WeakReference
{
public:
/** Creates a null SafePointer. */
inline WeakReference() noexcept {}
/** Creates a WeakReference that points at the given object. */
WeakReference (ObjectType* const object) : holder (getRef (object)) {}
/** Creates a copy of another WeakReference. */
WeakReference (const WeakReference& other) noexcept : holder (other.holder) {}
/** Copies another pointer to this one. */
WeakReference& operator= (const WeakReference& other) { holder = other.holder; return *this; }
/** Copies another pointer to this one. */
WeakReference& operator= (ObjectType* const newObject) { holder = getRef (newObject); return *this; }
#if JUCE_COMPILER_SUPPORTS_MOVE_SEMANTICS
WeakReference (WeakReference&& other) noexcept : holder (static_cast <SharedRef&&> (other.holder)) {}
WeakReference& operator= (WeakReference&& other) noexcept { holder = static_cast <SharedRef&&> (other.holder); return *this; }
#endif
/** Returns the object that this pointer refers to, or null if the object no longer exists. */
ObjectType* get() const noexcept { return holder != nullptr ? holder->get() : nullptr; }
/** Returns the object that this pointer refers to, or null if the object no longer exists. */
operator ObjectType*() const noexcept { return get(); }
/** Returns the object that this pointer refers to, or null if the object no longer exists. */
ObjectType* operator->() noexcept { return get(); }
/** Returns the object that this pointer refers to, or null if the object no longer exists. */
const ObjectType* operator->() const noexcept { return get(); }
/** This returns true if this reference has been pointing at an object, but that object has
since been deleted.
If this reference was only ever pointing at a null pointer, this will return false. Using
operator=() to make this refer to a different object will reset this flag to match the status
of the reference from which you're copying.
*/
bool wasObjectDeleted() const noexcept { return holder != nullptr && holder->get() == nullptr; }
bool operator== (ObjectType* const object) const noexcept { return get() == object; }
bool operator!= (ObjectType* const object) const noexcept { return get() != object; }
//==============================================================================
/** This class is used internally by the WeakReference class - don't use it directly
in your code!
@see WeakReference
*/
class SharedPointer : public ReferenceCountingType
{
public:
explicit SharedPointer (ObjectType* const obj) noexcept : owner (obj) {}
inline ObjectType* get() const noexcept { return owner; }
void clearPointer() noexcept { owner = nullptr; }
private:
ObjectType* volatile owner;
JUCE_DECLARE_NON_COPYABLE (SharedPointer)
};
typedef ReferenceCountedObjectPtr<SharedPointer> SharedRef;
//==============================================================================
/**
This class is embedded inside an object to which you want to attach WeakReference pointers.
See the WeakReference class notes for an example of how to use this class.
@see WeakReference
*/
class Master
{
public:
Master() noexcept {}
~Master() noexcept
{
// You must remember to call clear() in your source object's destructor! See the notes
// for the WeakReference class for an example of how to do this.
jassert (sharedPointer == nullptr || sharedPointer->get() == nullptr);
}
/** The first call to this method will create an internal object that is shared by all weak
references to the object.
*/
SharedPointer* getSharedPointer (ObjectType* const object)
{
if (sharedPointer == nullptr)
{
sharedPointer = new SharedPointer (object);
}
else
{
// You're trying to create a weak reference to an object that has already been deleted!!
jassert (sharedPointer->get() != nullptr);
}
return sharedPointer;
}
/** The object that owns this master pointer should call this before it gets destroyed,
to zero all the references to this object that may be out there. See the WeakReference
class notes for an example of how to do this.
*/
void clear() noexcept
{
if (sharedPointer != nullptr)
sharedPointer->clearPointer();
}
private:
SharedRef sharedPointer;
JUCE_DECLARE_NON_COPYABLE (Master)
};
private:
SharedRef holder;
static inline SharedPointer* getRef (ObjectType* const o)
{
return (o != nullptr) ? o->masterReference.getSharedPointer (o) : nullptr;
}
};
#endif // JUCE_WEAKREFERENCE_H_INCLUDED
|