1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
The code included in this file is provided under the terms of the ISC license
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
To use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted provided that the above copyright notice and
this permission notice appear in all copies.
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a mapping between an arbitrary range of values and a
normalised 0->1 range.
The properties of the mapping also include an optional snapping interval
and skew-factor.
@see Range
@tags{Core}
*/
template <typename ValueType>
class NormalisableRange
{
public:
/** Creates a continuous range that performs a dummy mapping. */
NormalisableRange() = default;
NormalisableRange (const NormalisableRange&) = default;
NormalisableRange& operator= (const NormalisableRange&) = default;
// VS2013 can't default move constructors
NormalisableRange (NormalisableRange&& other)
: start (other.start), end (other.end),
interval (other.interval), skew (other.skew),
symmetricSkew (other.symmetricSkew),
convertFrom0To1Function (std::move (other.convertFrom0To1Function)),
convertTo0To1Function (std::move (other.convertTo0To1Function)),
snapToLegalValueFunction (std::move (other.snapToLegalValueFunction))
{
}
// VS2013 can't default move assignments
NormalisableRange& operator= (NormalisableRange&& other)
{
start = other.start;
end = other.end;
interval = other.interval;
skew = other.skew;
symmetricSkew = other.symmetricSkew;
convertFrom0To1Function = std::move (other.convertFrom0To1Function);
convertTo0To1Function = std::move (other.convertTo0To1Function);
snapToLegalValueFunction = std::move (other.snapToLegalValueFunction);
return *this;
}
/** Creates a NormalisableRange with a given range, interval and skew factor. */
NormalisableRange (ValueType rangeStart,
ValueType rangeEnd,
ValueType intervalValue,
ValueType skewFactor,
bool useSymmetricSkew = false) noexcept
: start (rangeStart), end (rangeEnd), interval (intervalValue),
skew (skewFactor), symmetricSkew (useSymmetricSkew)
{
checkInvariants();
}
/** Creates a NormalisableRange with a given range, continuous interval, but a dummy skew-factor. */
NormalisableRange (ValueType rangeStart,
ValueType rangeEnd) noexcept
: start (rangeStart), end (rangeEnd)
{
checkInvariants();
}
/** Creates a NormalisableRange with a given range and interval, but a dummy skew-factor. */
NormalisableRange (ValueType rangeStart,
ValueType rangeEnd,
ValueType intervalValue) noexcept
: start (rangeStart), end (rangeEnd), interval (intervalValue)
{
checkInvariants();
}
/** Creates a NormalisableRange with a given range, continuous interval, but a dummy skew-factor. */
NormalisableRange (Range<ValueType> range) noexcept
: NormalisableRange (range.getStart(), range.getEnd())
{
}
/** Creates a NormalisableRange with a given range and interval, but a dummy skew-factor. */
NormalisableRange (Range<ValueType> range, ValueType intervalValue) noexcept
: NormalisableRange (range.getStart(), range.getEnd(), intervalValue)
{
}
/** Creates a NormalisableRange with a given range and an injective mapping function.
@param rangeStart The minimum value in the range.
@param rangeEnd The maximum value in the range.
@param convertFrom0To1Func A function which uses the current start and end of this NormalisableRange
and produces a mapped value from a normalised value.
@param convertTo0To1Func A function which uses the current start and end of this NormalisableRange
and produces a normalised value from a mapped value.
@param snapToLegalValueFunc A function which uses the current start and end of this NormalisableRange
to take a mapped value and snap it to the nearest legal value.
*/
NormalisableRange (ValueType rangeStart,
ValueType rangeEnd,
std::function<ValueType (ValueType currentRangeStart, ValueType currentRangeEnd, ValueType normalisedValue)> convertFrom0To1Func,
std::function<ValueType (ValueType currentRangeStart, ValueType currentRangeEnd, ValueType mappedValue)> convertTo0To1Func,
std::function<ValueType (ValueType currentRangeStart, ValueType currentRangeEnd, ValueType valueToSnap)> snapToLegalValueFunc = nullptr) noexcept
: start (rangeStart),
end (rangeEnd),
convertFrom0To1Function (convertFrom0To1Func),
convertTo0To1Function (convertTo0To1Func),
snapToLegalValueFunction (snapToLegalValueFunc)
{
checkInvariants();
}
/** Uses the properties of this mapping to convert a non-normalised value to
its 0->1 representation.
*/
ValueType convertTo0to1 (ValueType v) const noexcept
{
if (convertTo0To1Function != nullptr)
return clampTo0To1 (convertTo0To1Function (start, end, v));
auto proportion = clampTo0To1 ((v - start) / (end - start));
if (skew == static_cast<ValueType> (1))
return proportion;
if (! symmetricSkew)
return std::pow (proportion, skew);
auto distanceFromMiddle = static_cast<ValueType> (2) * proportion - static_cast<ValueType> (1);
return (static_cast<ValueType> (1) + std::pow (std::abs (distanceFromMiddle), skew)
* (distanceFromMiddle < ValueType() ? static_cast<ValueType> (-1)
: static_cast<ValueType> (1)))
/ static_cast<ValueType> (2);
}
/** Uses the properties of this mapping to convert a normalised 0->1 value to
its full-range representation.
*/
ValueType convertFrom0to1 (ValueType proportion) const noexcept
{
proportion = clampTo0To1 (proportion);
if (convertFrom0To1Function != nullptr)
return convertFrom0To1Function (start, end, proportion);
if (! symmetricSkew)
{
if (skew != static_cast<ValueType> (1) && proportion > ValueType())
proportion = std::exp (std::log (proportion) / skew);
return start + (end - start) * proportion;
}
auto distanceFromMiddle = static_cast<ValueType> (2) * proportion - static_cast<ValueType> (1);
if (skew != static_cast<ValueType> (1) && distanceFromMiddle != static_cast<ValueType> (0))
distanceFromMiddle = std::exp (std::log (std::abs (distanceFromMiddle)) / skew)
* (distanceFromMiddle < ValueType() ? static_cast<ValueType> (-1)
: static_cast<ValueType> (1));
return start + (end - start) / static_cast<ValueType> (2) * (static_cast<ValueType> (1) + distanceFromMiddle);
}
/** Takes a non-normalised value and snaps it based on either the interval property of
this NormalisedRange or the lambda function supplied to the constructor.
*/
ValueType snapToLegalValue (ValueType v) const noexcept
{
if (snapToLegalValueFunction != nullptr)
return snapToLegalValueFunction (start, end, v);
if (interval > ValueType())
v = start + interval * std::floor ((v - start) / interval + static_cast<ValueType> (0.5));
return (v <= start || end <= start) ? start : (v >= end ? end : v);
}
/** Returns the extent of the normalisable range. */
Range<ValueType> getRange() const noexcept { return { start, end }; }
/** Given a value which is between the start and end points, this sets the skew
such that convertFrom0to1 (0.5) will return this value.
If you have used lambda functions for convertFrom0to1Func and convertFrom0to1Func in the
constructor of this class then the skew value is ignored.
@param centrePointValue this must be greater than the start of the range and less than the end.
*/
void setSkewForCentre (ValueType centrePointValue) noexcept
{
jassert (centrePointValue > start);
jassert (centrePointValue < end);
symmetricSkew = false;
skew = std::log (static_cast<ValueType> (0.5)) / std::log ((centrePointValue - start) / (end - start));
checkInvariants();
}
/** The minimum value of the non-normalised range. */
ValueType start = 0;
/** The maximum value of the non-normalised range. */
ValueType end = 1;
/** The snapping interval that should be used (for a non-normalised value). Use 0 for a
continuous range.
If you have used a lambda function for snapToLegalValueFunction in the constructor of
this class then the interval is ignored.
*/
ValueType interval = 0;
/** An optional skew factor that alters the way values are distribute across the range.
The skew factor lets you skew the mapping logarithmically so that larger or smaller
values are given a larger proportion of the available space.
A factor of 1.0 has no skewing effect at all. If the factor is < 1.0, the lower end
of the range will fill more of the slider's length; if the factor is > 1.0, the upper
end of the range will be expanded.
If you have used lambda functions for convertFrom0to1Func and convertFrom0to1Func in the
constructor of this class then the skew value is ignored.
*/
ValueType skew = 1;
/** If true, the skew factor applies from the middle of the slider to each of its ends. */
bool symmetricSkew = false;
private:
void checkInvariants() const
{
jassert (end > start);
jassert (interval >= ValueType());
jassert (skew > ValueType());
}
static ValueType clampTo0To1 (ValueType value)
{
auto clampedValue = jlimit (static_cast<ValueType> (0), static_cast<ValueType> (1), value);
// If you hit this assertion then either your normalisation function is not working
// correctly or your input is out of the expected bounds.
jassert (clampedValue == value);
return clampedValue;
}
using ConversionFunction = std::function<ValueType(ValueType, ValueType, ValueType)>;
ConversionFunction convertFrom0To1Function = {},
convertTo0To1Function = {},
snapToLegalValueFunction = {};
};
} // namespace juce
|