File: juce_SIMDRegister_test.cpp

package info (click to toggle)
libopenshot-audio 0.2.2%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 7,692 kB
  • sloc: cpp: 94,189; java: 1,279; python: 105; makefile: 18; sh: 4
file content (919 lines) | stat: -rw-r--r-- 35,829 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
/*
  ==============================================================================

   This file is part of the JUCE library.
   Copyright (c) 2017 - ROLI Ltd.

   JUCE is an open source library subject to commercial or open-source
   licensing.

   By using JUCE, you agree to the terms of both the JUCE 5 End-User License
   Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
   27th April 2017).

   End User License Agreement: www.juce.com/juce-5-licence
   Privacy Policy: www.juce.com/juce-5-privacy-policy

   Or: You may also use this code under the terms of the GPL v3 (see
   www.gnu.org/licenses).

   JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
   EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
   DISCLAIMED.

  ==============================================================================
*/

namespace juce
{
namespace dsp
{

namespace SIMDRegister_test_internal
{
    template <typename type, typename = void> struct RandomPrimitive {};

    template <typename type>
    struct RandomPrimitive<type, typename std::enable_if<std::is_floating_point<type>::value>::type>
    {
        static type next (Random& random)
        {
            return static_cast<type> (std::is_signed<type>::value ? (random.nextFloat() * 16.0) - 8.0
                                                                  : (random.nextFloat() * 8.0));

        }
    };

    template <typename type>
    struct RandomPrimitive<type, typename std::enable_if<std::is_integral<type>::value>::type>
    {
        static type next (Random& random)
        {
            return static_cast<type> (random.nextInt64());

        }
    };

    template <typename type> struct RandomValue { static type next (Random& random) { return RandomPrimitive<type>::next (random); } };
    template <typename type>
    struct RandomValue<std::complex<type>>
    {
        static std::complex<type> next (Random& random)
        {
            return {RandomPrimitive<type>::next (random), RandomPrimitive<type>::next (random)};
        }
    };


    template <typename type>
    struct VecFiller
    {
        static void fill (type* dst, const int size, Random& random)
        {
            for (int i = 0; i < size; ++i)
                dst[i] = RandomValue<type>::next (random);
        }
    };

    // We need to specialise for complex types: otherwise GCC 6 gives
    // us an ICE internal compiler error after which the compiler seg faults.
    template <typename type>
    struct VecFiller<std::complex<type>>
    {
        static void fill (std::complex<type>* dst, const int size, Random& random)
        {
            for (int i = 0; i < size; ++i)
                dst[i] = std::complex<type> (RandomValue<type>::next (random), RandomValue<type>::next (random));
        }
    };

    template <typename type>
    struct VecFiller<SIMDRegister<type>>
    {
        static SIMDRegister<type> fill (Random& random)
        {
            constexpr int size = (int) SIMDRegister<type>::SIMDNumElements;
           #ifdef _MSC_VER
            __declspec(align(sizeof (SIMDRegister<type>))) type elements[size];
           #else
            type elements[(size_t) size] __attribute__((aligned(sizeof (SIMDRegister<type>))));
           #endif

            VecFiller<type>::fill (elements, size, random);
            return SIMDRegister<type>::fromRawArray (elements);
        }
    };

    // Avoid visual studio warning
    template <typename type>
    static type safeAbs (type a)
    {
        return static_cast<type> (std::abs (static_cast<double> (a)));
    }

    template <typename type>
    static type safeAbs (std::complex<type> a)
    {
        return std::abs (a);
    }

    template <typename type>
    static double difference (type a)
    {
        return static_cast<double> (safeAbs (a));
    }

    template <typename type>
    static double difference (type a, type b)
    {
        return difference (a - b);
    }
}

// These tests need to be strictly run on all platforms supported by JUCE as the
// SIMD code is highly platform dependent.

class SIMDRegisterUnitTests   : public UnitTest
{
public:
    SIMDRegisterUnitTests()
        : UnitTest ("SIMDRegister UnitTests", UnitTestCategories::dsp)
    {}

    //==============================================================================
    // Some helper classes
    template <typename type>
    static bool allValuesEqualTo (const SIMDRegister<type>& vec, const type scalar)
    {
       #ifdef _MSC_VER
        __declspec(align(sizeof (SIMDRegister<type>))) type elements[SIMDRegister<type>::SIMDNumElements];
       #else
        type elements[SIMDRegister<type>::SIMDNumElements] __attribute__((aligned(sizeof (SIMDRegister<type>))));
       #endif

        vec.copyToRawArray (elements);

        // as we do not want to rely on the access operator we cast this to a primitive pointer
        for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
            if (elements[i] != scalar) return false;

        return true;
    }

    template <typename type>
    static bool vecEqualToArray (const SIMDRegister<type>& vec, const type* array)
    {
        HeapBlock<type> vecElementsStorage (SIMDRegister<type>::SIMDNumElements * 2);
        auto* ptr = SIMDRegister<type>::getNextSIMDAlignedPtr (vecElementsStorage.getData());
        vec.copyToRawArray (ptr);

        for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
        {
            double delta = SIMDRegister_test_internal::difference (ptr[i], array[i]);
            if (delta > 1e-4)
            {
                DBG ("a: " << SIMDRegister_test_internal::difference (ptr[i]) << " b: " << SIMDRegister_test_internal::difference (array[i]) << " difference: " << delta);
                return false;
            }
        }

        return true;
    }

    template <typename type>
    static void copy (SIMDRegister<type>& vec, const type* ptr)
    {
        if (SIMDRegister<type>::isSIMDAligned (ptr))
        {
            vec = SIMDRegister<type>::fromRawArray (ptr);
        }
        else
        {
            for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                vec[i] = ptr[i];
        }
    }

    //==============================================================================
    // Some useful operations to test
    struct Addition
    {
        template <typename typeOne, typename typeTwo>
        static void inplace (typeOne& a, const typeTwo& b)
        {
            a += b;
        }

        template <typename typeOne, typename typeTwo>
        static typeOne outofplace (const typeOne& a, const typeTwo& b)
        {
            return a + b;
        }
    };

    struct Subtraction
    {
        template <typename typeOne, typename typeTwo>
        static void inplace (typeOne& a, const typeTwo& b)
        {
            a -= b;
        }

        template <typename typeOne, typename typeTwo>
        static typeOne outofplace (const typeOne& a, const typeTwo& b)
        {
            return a - b;
        }
    };

    struct Multiplication
    {
        template <typename typeOne, typename typeTwo>
        static void inplace (typeOne& a, const typeTwo& b)
        {
            a *= b;
        }

        template <typename typeOne, typename typeTwo>
        static typeOne outofplace (const typeOne& a, const typeTwo& b)
        {
            return a * b;
        }
    };

    struct BitAND
    {
        template <typename typeOne, typename typeTwo>
        static void inplace (typeOne& a, const typeTwo& b)
        {
            a &= b;
        }

        template <typename typeOne, typename typeTwo>
        static typeOne outofplace (const typeOne& a, const typeTwo& b)
        {
            return a & b;
        }
    };

    struct BitOR
    {
        template <typename typeOne, typename typeTwo>
        static void inplace (typeOne& a, const typeTwo& b)
        {
            a |= b;
        }

        template <typename typeOne, typename typeTwo>
        static typeOne outofplace (const typeOne& a, const typeTwo& b)
        {
            return a | b;
        }
    };

    struct BitXOR
    {
        template <typename typeOne, typename typeTwo>
        static void inplace (typeOne& a, const typeTwo& b)
        {
            a ^= b;
        }

        template <typename typeOne, typename typeTwo>
        static typeOne outofplace (const typeOne& a, const typeTwo& b)
        {
            return a ^ b;
        }
    };

    //==============================================================================
    // the individual tests
    struct InitializationTest
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            u.expect (allValuesEqualTo<type> (SIMDRegister<type>::expand (static_cast<type> (23)), 23));

            {
               #ifdef _MSC_VER
                __declspec(align(sizeof (SIMDRegister<type>))) type elements[SIMDRegister<type>::SIMDNumElements];
               #else
                type elements[SIMDRegister<type>::SIMDNumElements] __attribute__((aligned(sizeof (SIMDRegister<type>))));
               #endif
                SIMDRegister_test_internal::VecFiller<type>::fill (elements, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister<type> a (SIMDRegister<type>::fromRawArray (elements));

                u.expect (vecEqualToArray (a, elements));

                SIMDRegister<type> b (a);
                a *= static_cast<type> (2);

                u.expect (vecEqualToArray (b, elements));
            }
        }
    };

    struct AccessTest
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            // set-up
            SIMDRegister<type> a;
            type array [SIMDRegister<type>::SIMDNumElements];

            SIMDRegister_test_internal::VecFiller<type>::fill (array, SIMDRegister<type>::SIMDNumElements, random);

            // Test non-const access operator
            for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                a[i] = array[i];

            u.expect (vecEqualToArray (a, array));

            // Test const access operator
            const SIMDRegister<type>& b = a;

            for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                u.expect (b[i] == array[i]);
        }
    };

    template <class Operation>
    struct OperatorTests
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            for (int n = 0; n < 100; ++n)
            {
                // set-up
                SIMDRegister<type> a (static_cast<type> (0));
                SIMDRegister<type> b (static_cast<type> (0));
                SIMDRegister<type> c (static_cast<type> (0));

                type array_a [SIMDRegister<type>::SIMDNumElements];
                type array_b [SIMDRegister<type>::SIMDNumElements];
                type array_c [SIMDRegister<type>::SIMDNumElements];

                SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (array_b, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (array_c, SIMDRegister<type>::SIMDNumElements, random);

                copy (a, array_a); copy (b, array_b); copy (c, array_c);

                // test in-place with both params being vectors
                for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                    Operation::template inplace<type, type> (array_a[i], array_b[i]);

                Operation::template inplace<SIMDRegister<type>, SIMDRegister<type>> (a, b);

                u.expect (vecEqualToArray (a, array_a));
                u.expect (vecEqualToArray (b, array_b));

                SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (array_b, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (array_c, SIMDRegister<type>::SIMDNumElements, random);

                copy (a, array_a); copy (b, array_b); copy (c, array_c);

                // test in-place with one param being scalar
                for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                    Operation::template inplace<type, type> (array_b[i], static_cast<type> (2));

                Operation::template inplace<SIMDRegister<type>, type> (b, 2);

                u.expect (vecEqualToArray (a, array_a));
                u.expect (vecEqualToArray (b, array_b));

                // set-up again
                SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (array_b, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (array_c, SIMDRegister<type>::SIMDNumElements, random);
                copy (a, array_a); copy (b, array_b); copy (c, array_c);

                // test out-of-place with both params being vectors
                for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                    array_c[i] = Operation::template outofplace<type, type> (array_a[i], array_b[i]);

                c = Operation::template outofplace<SIMDRegister<type>, SIMDRegister<type>> (a, b);

                u.expect (vecEqualToArray (a, array_a));
                u.expect (vecEqualToArray (b, array_b));
                u.expect (vecEqualToArray (c, array_c));

                // test out-of-place with one param being scalar
                for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                    array_c[i] = Operation::template outofplace<type, type> (array_b[i], static_cast<type> (2));

                c = Operation::template outofplace<SIMDRegister<type>, type> (b, 2);

                u.expect (vecEqualToArray (a, array_a));
                u.expect (vecEqualToArray (b, array_b));
                u.expect (vecEqualToArray (c, array_c));
            }
        }
    };

    template <class Operation>
    struct BitOperatorTests
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            typedef typename SIMDRegister<type>::vMaskType vMaskType;
            typedef typename SIMDRegister<type>::MaskType MaskType;

            for (int n = 0; n < 100; ++n)
            {
                // Check flip sign bit and using as a union
                {
                    type array_a [SIMDRegister<type>::SIMDNumElements];

                    union ConversionUnion
                    {
                        inline ConversionUnion() : floatVersion (static_cast<type> (0)) {}
                        inline ~ConversionUnion() {}
                        SIMDRegister<type> floatVersion;
                        vMaskType intVersion;
                    } a, b;

                    vMaskType bitmask = vMaskType::expand (static_cast<MaskType> (1) << (sizeof (MaskType) - 1));
                    SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
                    copy (a.floatVersion, array_a);
                    copy (b.floatVersion, array_a);

                    Operation::template inplace<SIMDRegister<type>, vMaskType> (a.floatVersion, bitmask);
                    Operation::template inplace<vMaskType, vMaskType> (b.intVersion, bitmask);

                   #ifdef _MSC_VER
                    __declspec(align(sizeof (SIMDRegister<type>))) type elements[SIMDRegister<type>::SIMDNumElements];
                   #else
                    type elements[SIMDRegister<type>::SIMDNumElements] __attribute__((aligned(sizeof (SIMDRegister<type>))));
                   #endif
                    b.floatVersion.copyToRawArray (elements);

                    u.expect (vecEqualToArray (a.floatVersion, elements));
                }

                // set-up
                SIMDRegister<type> a, c;
                vMaskType b;

                MaskType array_a [SIMDRegister<MaskType>::SIMDNumElements];
                MaskType array_b [SIMDRegister<MaskType>::SIMDNumElements];
                MaskType array_c [SIMDRegister<MaskType>::SIMDNumElements];

                type float_a [SIMDRegister<type>::SIMDNumElements];
                type float_c [SIMDRegister<type>::SIMDNumElements];

                SIMDRegister_test_internal::VecFiller<type>::fill (float_a, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<MaskType>::fill (array_b, SIMDRegister<MaskType>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (float_c, SIMDRegister<type>::SIMDNumElements, random);

                memcpy (array_a, float_a, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                memcpy (array_c, float_c, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                copy (a, float_a); copy (b, array_b); copy (c, float_c);

                // test in-place with both params being vectors
                for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
                    Operation::template inplace<MaskType, MaskType> (array_a[i], array_b[i]);
                memcpy (float_a, array_a, sizeof (type) * SIMDRegister<type>::SIMDNumElements);

                Operation::template inplace<SIMDRegister<type>, vMaskType> (a, b);

                u.expect (vecEqualToArray (a, float_a));
                u.expect (vecEqualToArray (b, array_b));

                SIMDRegister_test_internal::VecFiller<type>::fill (float_a, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<MaskType>::fill (array_b, SIMDRegister<MaskType>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (float_c, SIMDRegister<type>::SIMDNumElements, random);
                memcpy (array_a, float_a, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                memcpy (array_c, float_c, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                copy (a, float_a); copy (b, array_b); copy (c, float_c);

                // test in-place with one param being scalar
                for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
                    Operation::template inplace<MaskType, MaskType> (array_a[i], static_cast<MaskType> (9));
                memcpy (float_a, array_a, sizeof (type) * SIMDRegister<type>::SIMDNumElements);

                Operation::template inplace<SIMDRegister<type>, MaskType> (a, static_cast<MaskType> (9));

                u.expect (vecEqualToArray (a, float_a));
                u.expect (vecEqualToArray (b, array_b));

                // set-up again
                SIMDRegister_test_internal::VecFiller<type>::fill (float_a, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<MaskType>::fill (array_b, SIMDRegister<MaskType>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (float_c, SIMDRegister<type>::SIMDNumElements, random);
                memcpy (array_a, float_a, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                memcpy (array_c, float_c, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                copy (a, float_a); copy (b, array_b); copy (c, float_c);

                // test out-of-place with both params being vectors
                for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
                {
                    array_c[i] =
                        Operation::template outofplace<MaskType, MaskType> (array_a[i], array_b[i]);
                }
                memcpy (float_a, array_a, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                memcpy (float_c, array_c, sizeof (type) * SIMDRegister<type>::SIMDNumElements);

                c = Operation::template outofplace<SIMDRegister<type>, vMaskType> (a, b);

                u.expect (vecEqualToArray (a, float_a));
                u.expect (vecEqualToArray (b, array_b));
                u.expect (vecEqualToArray (c, float_c));

                // test out-of-place with one param being scalar
                for (size_t i = 0; i < SIMDRegister<MaskType>::SIMDNumElements; ++i)
                    array_c[i] = Operation::template outofplace<MaskType, MaskType> (array_a[i], static_cast<MaskType> (9));
                memcpy (float_a, array_a, sizeof (type) * SIMDRegister<type>::SIMDNumElements);
                memcpy (float_c, array_c, sizeof (type) * SIMDRegister<type>::SIMDNumElements);

                c = Operation::template outofplace<SIMDRegister<type>, MaskType> (a, static_cast<MaskType> (9));

                u.expect (vecEqualToArray (a, float_a));
                u.expect (vecEqualToArray (b, array_b));
                u.expect (vecEqualToArray (c, float_c));
            }
        }
    };

    struct CheckComparisonOps
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            typedef typename SIMDRegister<type>::vMaskType vMaskType;
            typedef typename SIMDRegister<type>::MaskType MaskType;

            for (int i = 0; i < 100; ++i)
            {
                // set-up
                type array_a   [SIMDRegister<type>::SIMDNumElements];
                type array_b   [SIMDRegister<type>::SIMDNumElements];
                MaskType array_eq  [SIMDRegister<type>::SIMDNumElements];
                MaskType array_neq [SIMDRegister<type>::SIMDNumElements];
                MaskType array_lt  [SIMDRegister<type>::SIMDNumElements];
                MaskType array_le  [SIMDRegister<type>::SIMDNumElements];
                MaskType array_gt  [SIMDRegister<type>::SIMDNumElements];
                MaskType array_ge  [SIMDRegister<type>::SIMDNumElements];


                SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
                SIMDRegister_test_internal::VecFiller<type>::fill (array_b, SIMDRegister<type>::SIMDNumElements, random);

                // do check
                for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
                {
                    array_eq  [j] = (array_a[j] == array_b[j]) ? static_cast<MaskType> (-1) : 0;
                    array_neq [j] = (array_a[j] != array_b[j]) ? static_cast<MaskType> (-1) : 0;
                    array_lt  [j] = (array_a[j] <  array_b[j]) ? static_cast<MaskType> (-1) : 0;
                    array_le  [j] = (array_a[j] <= array_b[j]) ? static_cast<MaskType> (-1) : 0;
                    array_gt  [j] = (array_a[j] >  array_b[j]) ? static_cast<MaskType> (-1) : 0;
                    array_ge  [j] = (array_a[j] >= array_b[j]) ? static_cast<MaskType> (-1) : 0;
                }

                SIMDRegister<type> a (static_cast<type> (0));
                SIMDRegister<type> b (static_cast<type> (0));

                vMaskType eq, neq, lt, le, gt, ge;

                copy (a, array_a);
                copy (b, array_b);

                eq  = SIMDRegister<type>::equal              (a, b);
                neq = SIMDRegister<type>::notEqual           (a, b);
                lt  = SIMDRegister<type>::lessThan           (a, b);
                le  = SIMDRegister<type>::lessThanOrEqual    (a, b);
                gt  = SIMDRegister<type>::greaterThan        (a, b);
                ge  = SIMDRegister<type>::greaterThanOrEqual (a, b);

                u.expect (vecEqualToArray (eq,  array_eq ));
                u.expect (vecEqualToArray (neq, array_neq));
                u.expect (vecEqualToArray (lt,  array_lt ));
                u.expect (vecEqualToArray (le,  array_le ));
                u.expect (vecEqualToArray (gt,  array_gt ));
                u.expect (vecEqualToArray (ge,  array_ge ));

                do
                {
                    SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
                    SIMDRegister_test_internal::VecFiller<type>::fill (array_b, SIMDRegister<type>::SIMDNumElements, random);
                } while (std::equal (array_a, array_a + SIMDRegister<type>::SIMDNumElements, array_b));

                copy (a, array_a);
                copy (b, array_b);
                u.expect (a != b);
                u.expect (b != a);
                u.expect (! (a == b));
                u.expect (! (b == a));

                SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
                copy (a, array_a);
                copy (b, array_a);

                u.expect (a == b);
                u.expect (b == a);
                u.expect (! (a != b));
                u.expect (! (b != a));

                type scalar = a[0];
                a = SIMDRegister<type>::expand (scalar);

                u.expect (a == scalar);
                u.expect (! (a != scalar));

                scalar--;

                u.expect (a != scalar);
                u.expect (! (a == scalar));
            }
        }
    };

    struct CheckMultiplyAdd
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            // set-up
            type array_a [SIMDRegister<type>::SIMDNumElements];
            type array_b [SIMDRegister<type>::SIMDNumElements];
            type array_c [SIMDRegister<type>::SIMDNumElements];
            type array_d [SIMDRegister<type>::SIMDNumElements];

            SIMDRegister_test_internal::VecFiller<type>::fill (array_a, SIMDRegister<type>::SIMDNumElements, random);
            SIMDRegister_test_internal::VecFiller<type>::fill (array_b, SIMDRegister<type>::SIMDNumElements, random);
            SIMDRegister_test_internal::VecFiller<type>::fill (array_c, SIMDRegister<type>::SIMDNumElements, random);
            SIMDRegister_test_internal::VecFiller<type>::fill (array_d, SIMDRegister<type>::SIMDNumElements, random);

            // check
            for (size_t i = 0; i < SIMDRegister<type>::SIMDNumElements; ++i)
                array_d[i] = array_a[i] + (array_b[i] * array_c[i]);

            SIMDRegister<type> a, b, c, d;

            copy (a, array_a);
            copy (b, array_b);
            copy (c, array_c);

            d = SIMDRegister<type>::multiplyAdd (a, b, c);

            u.expect (vecEqualToArray (d, array_d));
        }
    };

    struct CheckMinMax
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            for (int i = 0; i < 100; ++i)
            {
                type array_a [SIMDRegister<type>::SIMDNumElements];
                type array_b [SIMDRegister<type>::SIMDNumElements];
                type array_min [SIMDRegister<type>::SIMDNumElements];
                type array_max [SIMDRegister<type>::SIMDNumElements];

                for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
                {
                    array_a[j] = static_cast<type> (random.nextInt (127));
                    array_b[j] = static_cast<type> (random.nextInt (127));
                }

                for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
                {
                    array_min[j] = (array_a[j] < array_b[j]) ? array_a[j] : array_b[j];
                    array_max[j] = (array_a[j] > array_b[j]) ? array_a[j] : array_b[j];
                }

                SIMDRegister<type> a (static_cast<type> (0));
                SIMDRegister<type> b (static_cast<type> (0));
                SIMDRegister<type> vMin (static_cast<type> (0));
                SIMDRegister<type> vMax (static_cast<type> (0));

                copy (a, array_a);
                copy (b, array_b);

                vMin = jmin (a, b);
                vMax = jmax (a, b);

                u.expect (vecEqualToArray (vMin, array_min));
                u.expect (vecEqualToArray (vMax, array_max));

                copy (vMin, array_a);
                copy (vMax, array_a);

                vMin = SIMDRegister<type>::min (a, b);
                vMax = SIMDRegister<type>::max (a, b);

                u.expect (vecEqualToArray (vMin, array_min));
                u.expect (vecEqualToArray (vMax, array_max));
            }
        }
    };

    struct CheckSum
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            type array [SIMDRegister<type>::SIMDNumElements];
            type sumCheck = 0;

            SIMDRegister_test_internal::VecFiller<type>::fill (array, SIMDRegister<type>::SIMDNumElements, random);

            for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
            {
                sumCheck += array[j];
            }

            SIMDRegister<type> a;
            copy (a, array);

            u.expect (SIMDRegister_test_internal::difference (sumCheck, a.sum()) < 1e-4);
        }
    };

    struct CheckAbs
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            type inArray[SIMDRegister<type>::SIMDNumElements];
            type outArray[SIMDRegister<type>::SIMDNumElements];

            SIMDRegister_test_internal::VecFiller<type>::fill (inArray, SIMDRegister<type>::SIMDNumElements, random);

            SIMDRegister<type> a;
            copy (a, inArray);
            a = SIMDRegister<type>::abs (a);

            auto calcAbs = [] (type x) -> type { return x >= type (0) ? x : -x; };

            for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
                outArray[j] = calcAbs (inArray[j]);

            u.expect (vecEqualToArray (a, outArray));
        }
    };

    struct CheckTruncate
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            type inArray[SIMDRegister<type>::SIMDNumElements];
            type outArray[SIMDRegister<type>::SIMDNumElements];

            SIMDRegister_test_internal::VecFiller<type>::fill (inArray, SIMDRegister<type>::SIMDNumElements, random);

            SIMDRegister<type> a;
            copy (a, inArray);
            a = SIMDRegister<type>::truncate (a);

            for (size_t j = 0; j < SIMDRegister<type>::SIMDNumElements; ++j)
                outArray[j] = (type) (int) inArray[j];

            u.expect (vecEqualToArray (a, outArray));
        }
    };

    struct CheckBoolEquals
    {
        template <typename type>
        static void run (UnitTest& u, Random& random)
        {
            bool is_signed = std::is_signed<type>::value;
            type array [SIMDRegister<type>::SIMDNumElements];

            auto value = is_signed ? static_cast<type> ((random.nextFloat() * 16.0) - 8.0)
                                   : static_cast<type> (random.nextFloat() * 8.0);

            std::fill (array, array + SIMDRegister<type>::SIMDNumElements, value);
            SIMDRegister<type> a, b;
            copy (a, array);

            u.expect (a == value);
            u.expect (! (a != value));
            value += 1;

            u.expect (a != value);
            u.expect (! (a == value));

            SIMDRegister_test_internal::VecFiller<type>::fill (array, SIMDRegister<type>::SIMDNumElements, random);
            copy (a, array);
            copy (b, array);

            u.expect (a == b);
            u.expect (! (a != b));

            SIMDRegister_test_internal::VecFiller<type>::fill (array, SIMDRegister<type>::SIMDNumElements, random);
            copy (b, array);

            u.expect (a != b);
            u.expect (! (a == b));
        }
    };

    //==============================================================================
    template <class TheTest>
    void runTestFloatingPoint (const char* unitTestName)
    {
        beginTest (unitTestName);

        Random random = getRandom();

        TheTest::template run<float>  (*this, random);
        TheTest::template run<double> (*this, random);
    }

    //==============================================================================
    template <class TheTest>
    void runTestForAllTypes (const char* unitTestName)
    {
        beginTest (unitTestName);

        Random random = getRandom();

        TheTest::template run<float>   (*this, random);
        TheTest::template run<double>  (*this, random);
        TheTest::template run<int8_t>  (*this, random);
        TheTest::template run<uint8_t> (*this, random);
        TheTest::template run<int16_t> (*this, random);
        TheTest::template run<uint16_t>(*this, random);
        TheTest::template run<int32_t> (*this, random);
        TheTest::template run<uint32_t>(*this, random);
        TheTest::template run<int64_t> (*this, random);
        TheTest::template run<uint64_t>(*this, random);
        TheTest::template run<std::complex<float>>   (*this, random);
        TheTest::template run<std::complex<double>>  (*this, random);
    }

    template <class TheTest>
    void runTestNonComplex (const char* unitTestName)
    {
        beginTest (unitTestName);

        Random random = getRandom();

        TheTest::template run<float>   (*this, random);
        TheTest::template run<double>  (*this, random);
        TheTest::template run<int8_t>  (*this, random);
        TheTest::template run<uint8_t> (*this, random);
        TheTest::template run<int16_t> (*this, random);
        TheTest::template run<uint16_t>(*this, random);
        TheTest::template run<int32_t> (*this, random);
        TheTest::template run<uint32_t>(*this, random);
        TheTest::template run<int64_t> (*this, random);
        TheTest::template run<uint64_t>(*this, random);
    }

    template <class TheTest>
    void runTestSigned (const char* unitTestName)
    {
        beginTest (unitTestName);

        Random random = getRandom();

        TheTest::template run<float>   (*this, random);
        TheTest::template run<double>  (*this, random);
        TheTest::template run<int8_t>  (*this, random);
        TheTest::template run<int16_t> (*this, random);
        TheTest::template run<int32_t> (*this, random);
        TheTest::template run<int64_t> (*this, random);
    }

    void runTest()
    {
        runTestForAllTypes<InitializationTest> ("InitializationTest");

        runTestForAllTypes<AccessTest> ("AccessTest");

        runTestForAllTypes<OperatorTests<Addition>> ("AdditionOperators");
        runTestForAllTypes<OperatorTests<Subtraction>> ("SubtractionOperators");
        runTestForAllTypes<OperatorTests<Multiplication>> ("MultiplicationOperators");

        runTestForAllTypes<BitOperatorTests<BitAND>> ("BitANDOperators");
        runTestForAllTypes<BitOperatorTests<BitOR>>  ("BitOROperators");
        runTestForAllTypes<BitOperatorTests<BitXOR>> ("BitXOROperators");

        runTestNonComplex<CheckComparisonOps> ("CheckComparisons");
        runTestNonComplex<CheckBoolEquals> ("CheckBoolEquals");
        runTestNonComplex<CheckMinMax> ("CheckMinMax");

        runTestForAllTypes<CheckMultiplyAdd> ("CheckMultiplyAdd");
        runTestForAllTypes<CheckSum> ("CheckSum");

        runTestSigned<CheckAbs> ("CheckAbs");

        runTestFloatingPoint<CheckTruncate> ("CheckTruncate");
    }
};

static SIMDRegisterUnitTests SIMDRegisterUnitTests;

} // namespace dsp
} // namespace juce