1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
/**
This class contains various fast mathematical function approximations.
@tags{DSP}
*/
struct FastMathApproximations
{
/** Provides a fast approximation of the function cosh(x) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -5 and +5 for limiting the error.
*/
template <typename FloatType>
static FloatType cosh (FloatType x) noexcept
{
auto x2 = x * x;
auto numerator = -(39251520 + x2 * (18471600 + x2 * (1075032 + 14615 * x2)));
auto denominator = -39251520 + x2 * (1154160 + x2 * (-16632 + 127 * x2));
return numerator / denominator;
}
/** Provides a fast approximation of the function cosh(x) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -5 and +5 for limiting the error.
*/
template <typename FloatType>
static void cosh (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::cosh (values[i]);
}
/** Provides a fast approximation of the function sinh(x) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -5 and +5 for limiting the error.
*/
template <typename FloatType>
static FloatType sinh (FloatType x) noexcept
{
auto x2 = x * x;
auto numerator = -x * (11511339840 + x2 * (1640635920 + x2 * (52785432 + x2 * 479249)));
auto denominator = -11511339840 + x2 * (277920720 + x2 * (-3177720 + x2 * 18361));
return numerator / denominator;
}
/** Provides a fast approximation of the function sinh(x) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -5 and +5 for limiting the error.
*/
template <typename FloatType>
static void sinh (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::sinh (values[i]);
}
/** Provides a fast approximation of the function tanh(x) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -5 and +5 for limiting the error.
*/
template <typename FloatType>
static FloatType tanh (FloatType x) noexcept
{
auto x2 = x * x;
auto numerator = x * (135135 + x2 * (17325 + x2 * (378 + x2)));
auto denominator = 135135 + x2 * (62370 + x2 * (3150 + 28 * x2));
return numerator / denominator;
}
/** Provides a fast approximation of the function tanh(x) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -5 and +5 for limiting the error.
*/
template <typename FloatType>
static void tanh (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::tanh (values[i]);
}
//==============================================================================
/** Provides a fast approximation of the function cos(x) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -pi and +pi for limiting the error.
*/
template <typename FloatType>
static FloatType cos (FloatType x) noexcept
{
auto x2 = x * x;
auto numerator = -(-39251520 + x2 * (18471600 + x2 * (-1075032 + 14615 * x2)));
auto denominator = 39251520 + x2 * (1154160 + x2 * (16632 + x2 * 127));
return numerator / denominator;
}
/** Provides a fast approximation of the function cos(x) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -pi and +pi for limiting the error.
*/
template <typename FloatType>
static void cos (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::cos (values[i]);
}
/** Provides a fast approximation of the function sin(x) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -pi and +pi for limiting the error.
*/
template <typename FloatType>
static FloatType sin (FloatType x) noexcept
{
auto x2 = x * x;
auto numerator = -x * (-11511339840 + x2 * (1640635920 + x2 * (-52785432 + x2 * 479249)));
auto denominator = 11511339840 + x2 * (277920720 + x2 * (3177720 + x2 * 18361));
return numerator / denominator;
}
/** Provides a fast approximation of the function sin(x) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -pi and +pi for limiting the error.
*/
template <typename FloatType>
static void sin (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::sin (values[i]);
}
/** Provides a fast approximation of the function tan(x) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -pi/2 and +pi/2 for limiting the error.
*/
template <typename FloatType>
static FloatType tan (FloatType x) noexcept
{
auto x2 = x * x;
auto numerator = x * (-135135 + x2 * (17325 + x2 * (-378 + x2)));
auto denominator = -135135 + x2 * (62370 + x2 * (-3150 + 28 * x2));
return numerator / denominator;
}
/** Provides a fast approximation of the function tan(x) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -pi/2 and +pi/2 for limiting the error.
*/
template <typename FloatType>
static void tan (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::tan (values[i]);
}
//==============================================================================
/** Provides a fast approximation of the function exp(x) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -6 and +4 for limiting the error.
*/
template <typename FloatType>
static FloatType exp (FloatType x) noexcept
{
auto numerator = 1680 + x * (840 + x * (180 + x * (20 + x)));
auto denominator = 1680 + x *(-840 + x * (180 + x * (-20 + x)));
return numerator / denominator;
}
/** Provides a fast approximation of the function exp(x) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -6 and +4 for limiting the error.
*/
template <typename FloatType>
static void exp (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::exp (values[i]);
}
/** Provides a fast approximation of the function log(x+1) using a Pade approximant
continued fraction, calculated sample by sample.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -0.8 and +5 for limiting the error.
*/
template <typename FloatType>
static FloatType logNPlusOne (FloatType x) noexcept
{
auto numerator = x * (7560 + x * (15120 + x * (9870 + x * (2310 + x * 137))));
auto denominator = 7560 + x * (18900 + x * (16800 + x * (6300 + x * (900 + 30 * x))));
return numerator / denominator;
}
/** Provides a fast approximation of the function log(x+1) using a Pade approximant
continued fraction, calculated on a whole buffer.
Note: This is an approximation which works on a limited range. You are
advised to use input values only between -0.8 and +5 for limiting the error.
*/
template <typename FloatType>
static void logNPlusOne (FloatType* values, size_t numValues) noexcept
{
for (size_t i = 0; i < numValues; ++i)
values[i] = FastMathApproximations::logNPlusOne (values[i]);
}
};
} // namespace dsp
} // namespace juce
|