1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
/**
A class representing a polynomial
@tags{DSP}
*/
template <typename FloatingType>
class Polynomial
{
public:
//==============================================================================
/** Creates a new polynomial which will always evaluate to zero. */
Polynomial()
{
coeffs.add (0);
}
/** Creates a new polynomial with given coefficients.
@param numCoefficients The number of coefficients stored in coefficients.
This is also the order of the returned polynomial.
@param coefficients The coefficients which will be used by the newly
created polynomial. The Polynomial class will keep
a private copy of the coefficients.
*/
Polynomial (const FloatingType* coefficients, int numCoefficients)
: coeffs (coefficients, numCoefficients)
{
jassert (! coeffs.isEmpty());
}
/** Creates a copy of another polynomial. */
Polynomial (const Polynomial&) = default;
/** Creates a copy of another polynomial. */
Polynomial (Polynomial&&) = default;
/** Creates a copy of another polynomial. */
Polynomial& operator= (const Polynomial&) = default;
/** Creates a copy of another polynomial. */
Polynomial& operator= (Polynomial&&) = default;
/** Creates a new polynomial with coefficients by a C++11 initializer list.
This function can be used in the following way:
Polynomial<float> p ({0.5f, -0.3f, 0.2f});
*/
template <typename... Values>
Polynomial (Values... items) : coeffs (items...)
{
jassert (! coeffs.isEmpty());
}
//==============================================================================
/** Returns a single coefficient of the receiver for reading */
FloatingType operator[] (int index) const noexcept { return coeffs.getUnchecked (index); }
/** Returns a single coefficient of the receiver for modifying. */
FloatingType& operator[] (int index) noexcept { return coeffs.getReference (index); }
/** Evaluates the value of the polynomial at a single point x. */
FloatingType operator() (FloatingType x) const noexcept
{
// Horner's method
FloatingType y (0);
for (int i = coeffs.size(); --i >= 0;)
y = (x * y) + coeffs.getUnchecked(i);
return y;
}
/** Returns the order of the polynomial. */
int getOrder() noexcept
{
return coeffs.size() - 1;
}
//==============================================================================
/** Returns the polynomial with all its coefficients multiplied with a gain factor */
Polynomial<FloatingType> withGain (double gain) const
{
auto result = *this;
for (auto& c : result.coeffs)
c *= gain;
return result;
}
/** Returns the sum of this polynomial with another */
Polynomial<FloatingType> getSumWith (const Polynomial<FloatingType>& other) const
{
if (coeffs.size() < other.coeffs.size())
return other.getSumWith (*this);
auto result = *this;
for (int i = 0; i < other.coeffs.size(); ++i)
result[i] += other[i];
return result;
}
/** computes the product of two polynomials and return the result */
Polynomial<FloatingType> getProductWith (const Polynomial<FloatingType>& other) const
{
Polynomial<FloatingType> result;
result.coeffs.clearQuick();
auto N1 = coeffs.size();
auto N2 = other.coeffs.size();
auto Nmax = jmax (N1, N2);
auto N = N1 + N2 - 1;
for (int i = 0; i < N; ++i)
{
FloatingType value (0);
for (int j = 0; j < Nmax; ++j)
if (j >= 0 && j < N1 && i - j >= 0 && i - j < N2)
value = value + (*this)[j] * other[i - j];
result.coeffs.add (value);
}
return result;
}
private:
//==============================================================================
Array<FloatingType> coeffs;
JUCE_LEAK_DETECTOR (Polynomial)
};
} // namespace dsp
} // namespace juce
|