1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2017 - ROLI Ltd.
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 5 End-User License
Agreement and JUCE 5 Privacy Policy (both updated and effective as of the
27th April 2017).
End User License Agreement: www.juce.com/juce-5-licence
Privacy Policy: www.juce.com/juce-5-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
/** A template specialisation to find corresponding mask type for primitives. */
namespace SIMDInternal
{
template <typename Primitive> struct MaskTypeFor { using type = Primitive; };
template <> struct MaskTypeFor <float> { using type = uint32_t; };
template <> struct MaskTypeFor <double> { using type = uint64_t; };
template <> struct MaskTypeFor <char> { using type = uint8_t; };
template <> struct MaskTypeFor <int8_t> { using type = uint8_t; };
template <> struct MaskTypeFor <int16_t> { using type = uint16_t; };
template <> struct MaskTypeFor <int32_t> { using type = uint32_t; };
template <> struct MaskTypeFor <int64_t> { using type = uint64_t; };
template <> struct MaskTypeFor <std::complex<float>> { using type = uint32_t; };
template <> struct MaskTypeFor <std::complex<double>> { using type = uint64_t; };
template <typename Primitive> struct PrimitiveType { using type = typename std::remove_cv<Primitive>::type; };
template <typename Primitive> struct PrimitiveType<std::complex<Primitive>> { using type = typename std::remove_cv<Primitive>::type; };
template <int n> struct Log2Helper { enum { value = Log2Helper<n/2>::value + 1 }; };
template <> struct Log2Helper<1> { enum { value = 0 }; };
}
/**
Useful fallback routines to use if the native SIMD op is not supported. You
should never need to use this directly. Use juce_SIMDRegister instead.
@tags{DSP}
*/
template <typename ScalarType, typename vSIMDType>
struct SIMDFallbackOps
{
static constexpr size_t n = sizeof (vSIMDType) / sizeof (ScalarType);
static constexpr size_t mask = (sizeof (vSIMDType) / sizeof (ScalarType)) - 1;
static constexpr size_t bits = SIMDInternal::Log2Helper<(int) n>::value;
// helper types
using MaskType = typename SIMDInternal::MaskTypeFor<ScalarType>::type;
union UnionType { vSIMDType v; ScalarType s[n]; };
union UnionMaskType { vSIMDType v; MaskType m[n]; };
// fallback methods
static forcedinline vSIMDType add (vSIMDType a, vSIMDType b) noexcept { return apply<ScalarAdd> (a, b); }
static forcedinline vSIMDType sub (vSIMDType a, vSIMDType b) noexcept { return apply<ScalarSub> (a, b); }
static forcedinline vSIMDType mul (vSIMDType a, vSIMDType b) noexcept { return apply<ScalarMul> (a, b); }
static forcedinline vSIMDType bit_and (vSIMDType a, vSIMDType b) noexcept { return bitapply<ScalarAnd> (a, b); }
static forcedinline vSIMDType bit_or (vSIMDType a, vSIMDType b) noexcept { return bitapply<ScalarOr > (a, b); }
static forcedinline vSIMDType bit_xor (vSIMDType a, vSIMDType b) noexcept { return bitapply<ScalarXor> (a, b); }
static forcedinline vSIMDType bit_notand (vSIMDType a, vSIMDType b) noexcept { return bitapply<ScalarNot> (a, b); }
static forcedinline vSIMDType min (vSIMDType a, vSIMDType b) noexcept { return apply<ScalarMin> (a, b); }
static forcedinline vSIMDType max (vSIMDType a, vSIMDType b) noexcept { return apply<ScalarMax> (a, b); }
static forcedinline vSIMDType equal (vSIMDType a, vSIMDType b) noexcept { return cmp<ScalarEq > (a, b); }
static forcedinline vSIMDType notEqual (vSIMDType a, vSIMDType b) noexcept { return cmp<ScalarNeq> (a, b); }
static forcedinline vSIMDType greaterThan (vSIMDType a, vSIMDType b) noexcept { return cmp<ScalarGt > (a, b); }
static forcedinline vSIMDType greaterThanOrEqual (vSIMDType a, vSIMDType b) noexcept { return cmp<ScalarGeq> (a, b); }
static forcedinline ScalarType get (vSIMDType v, size_t i) noexcept
{
UnionType u {v};
return u.s[i];
}
static forcedinline vSIMDType set (vSIMDType v, size_t i, ScalarType s) noexcept
{
UnionType u {v};
u.s[i] = s;
return u.v;
}
static forcedinline vSIMDType bit_not (vSIMDType av) noexcept
{
UnionMaskType a {av};
for (size_t i = 0; i < n; ++i)
a.m[i] = ~a.m[i];
return a.v;
}
static forcedinline ScalarType sum (vSIMDType av) noexcept
{
UnionType a {av};
auto retval = static_cast<ScalarType> (0);
for (size_t i = 0; i < n; ++i)
retval += a.s[i];
return retval;
}
static forcedinline vSIMDType truncate (vSIMDType av) noexcept
{
UnionType a {av};
for (size_t i = 0; i < n; ++i)
{
jassert (a.s[i] >= ScalarType (0));
a.s[i] = static_cast <ScalarType> (static_cast<int> (a.s[i]));
}
return a.v;
}
static forcedinline vSIMDType multiplyAdd (vSIMDType av, vSIMDType bv, vSIMDType cv) noexcept
{
UnionType a {av}, b {bv}, c {cv};
for (size_t i = 0; i < n; ++i)
a.s[i] += b.s[i] * c.s[i];
return a.v;
}
//==============================================================================
static forcedinline bool allEqual (vSIMDType av, vSIMDType bv) noexcept
{
UnionType a {av}, b {bv};
for (size_t i = 0; i < n; ++i)
if (a.s[i] != b.s[i])
return false;
return true;
}
//==============================================================================
static forcedinline vSIMDType cmplxmul (vSIMDType av, vSIMDType bv) noexcept
{
UnionType a {av}, b {bv}, r;
const int m = n >> 1;
for (int i = 0; i < m; ++i)
{
std::complex<ScalarType> result
= std::complex<ScalarType> (a.s[i<<1], a.s[(i<<1)|1])
* std::complex<ScalarType> (b.s[i<<1], b.s[(i<<1)|1]);
r.s[i<<1] = result.real();
r.s[(i<<1)|1] = result.imag();
}
return r.v;
}
struct ScalarAdd { static forcedinline ScalarType op (ScalarType a, ScalarType b) noexcept { return a + b; } };
struct ScalarSub { static forcedinline ScalarType op (ScalarType a, ScalarType b) noexcept { return a - b; } };
struct ScalarMul { static forcedinline ScalarType op (ScalarType a, ScalarType b) noexcept { return a * b; } };
struct ScalarMin { static forcedinline ScalarType op (ScalarType a, ScalarType b) noexcept { return jmin (a, b); } };
struct ScalarMax { static forcedinline ScalarType op (ScalarType a, ScalarType b) noexcept { return jmax (a, b); } };
struct ScalarAnd { static forcedinline MaskType op (MaskType a, MaskType b) noexcept { return a & b; } };
struct ScalarOr { static forcedinline MaskType op (MaskType a, MaskType b) noexcept { return a | b; } };
struct ScalarXor { static forcedinline MaskType op (MaskType a, MaskType b) noexcept { return a ^ b; } };
struct ScalarNot { static forcedinline MaskType op (MaskType a, MaskType b) noexcept { return (~a) & b; } };
struct ScalarEq { static forcedinline bool op (ScalarType a, ScalarType b) noexcept { return (a == b); } };
struct ScalarNeq { static forcedinline bool op (ScalarType a, ScalarType b) noexcept { return (a != b); } };
struct ScalarGt { static forcedinline bool op (ScalarType a, ScalarType b) noexcept { return (a > b); } };
struct ScalarGeq { static forcedinline bool op (ScalarType a, ScalarType b) noexcept { return (a >= b); } };
// generic apply routines for operations above
template <typename Op>
static forcedinline vSIMDType apply (vSIMDType av, vSIMDType bv) noexcept
{
UnionType a {av}, b {bv};
for (size_t i = 0; i < n; ++i)
a.s[i] = Op::op (a.s[i], b.s[i]);
return a.v;
}
template <typename Op>
static forcedinline vSIMDType cmp (vSIMDType av, vSIMDType bv) noexcept
{
UnionType a {av}, b {bv};
UnionMaskType r;
for (size_t i = 0; i < n; ++i)
r.m[i] = Op::op (a.s[i], b.s[i]) ? static_cast<MaskType> (-1) : static_cast<MaskType> (0);
return r.v;
}
template <typename Op>
static forcedinline vSIMDType bitapply (vSIMDType av, vSIMDType bv) noexcept
{
UnionMaskType a {av}, b {bv};
for (size_t i = 0; i < n; ++i)
a.m[i] = Op::op (a.m[i], b.m[i]);
return a.v;
}
static forcedinline vSIMDType expand (ScalarType s) noexcept
{
UnionType r;
for (size_t i = 0; i < n; ++i)
r.s[i] = s;
return r.v;
}
static forcedinline vSIMDType load (const ScalarType* a) noexcept
{
UnionType r;
for (size_t i = 0; i < n; ++i)
r.s[i] = a[i];
return r.v;
}
static forcedinline void store (vSIMDType av, ScalarType* dest) noexcept
{
UnionType a {av};
for (size_t i = 0; i < n; ++i)
dest[i] = a.s[i];
}
template <unsigned int shuffle_idx>
static forcedinline vSIMDType shuffle (vSIMDType av) noexcept
{
UnionType a {av}, r;
// the compiler will unroll this loop and the index can
// be computed at compile-time, so this will be super fast
for (size_t i = 0; i < n; ++i)
r.s[i] = a.s[(shuffle_idx >> (bits * i)) & mask];
return r.v;
}
};
} // namespace dsp
} // namespace juce
|