1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/**
* @file
* @brief Unit tests for openshot::AudioWaveformer
* @author Jonathan Thomas <jonathan@openshot.org>
*
* @ref License
*/
// Copyright (c) 2008-2022 OpenShot Studios, LLC
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "openshot_catch.h"
#include "AudioWaveformer.h"
#include "FFmpegReader.h"
using namespace openshot;
TEST_CASE( "Extract waveform data piano.wav", "[libopenshot][audiowaveformer]" )
{
// Create a reader
std::stringstream path;
path << TEST_MEDIA_PATH << "piano.wav";
FFmpegReader r(path.str());
r.Open();
// Create AudioWaveformer and extract a smaller "average" sample set of audio data
AudioWaveformer waveformer(&r);
for (auto channel = 0; channel < r.info.channels; channel++) {
AudioWaveformData waveform = waveformer.ExtractSamples(channel, 20, false);
if (channel == 0) {
CHECK(waveform.rms_samples.size() == 107);
CHECK(waveform.rms_samples[0] == Approx(0.04879f).margin(0.00001));
CHECK(waveform.rms_samples[86] == Approx(0.13578f).margin(0.00001));
CHECK(waveform.rms_samples[87] == Approx(0.0f).margin(0.00001));
} else if (channel == 1) {
CHECK(waveform.rms_samples.size() == 107);
CHECK(waveform.rms_samples[0] == Approx(0.04879f).margin(0.00001));
CHECK(waveform.rms_samples[86] == Approx(0.13578f).margin(0.00001));
CHECK(waveform.rms_samples[87] == Approx(0.0f).margin(0.00001));
}
waveform.clear();
}
// Clean up
r.Close();
}
TEST_CASE( "Extract waveform data sintel", "[libopenshot][audiowaveformer]" )
{
// Create a reader
std::stringstream path;
path << TEST_MEDIA_PATH << "sintel_trailer-720p.mp4";
FFmpegReader r(path.str());
// Create AudioWaveformer and extract a smaller "average" sample set of audio data
AudioWaveformer waveformer(&r);
for (auto channel = 0; channel < r.info.channels; channel++) {
AudioWaveformData waveform = waveformer.ExtractSamples(channel, 20, false);
if (channel == 0) {
CHECK(waveform.rms_samples.size() == 1058);
CHECK(waveform.rms_samples[0] == Approx(0.00001f).margin(0.00001));
CHECK(waveform.rms_samples[1037] == Approx(0.00003f).margin(0.00001));
CHECK(waveform.rms_samples[1038] == Approx(0.0f).margin(0.00001));
} else if (channel == 1) {
CHECK(waveform.rms_samples.size() == 1058);
CHECK(waveform.rms_samples[0] == Approx(0.00001f ).margin(0.00001));
CHECK(waveform.rms_samples[1037] == Approx(0.00003f).margin(0.00001));
CHECK(waveform.rms_samples[1038] == Approx(0.0f).margin(0.00001));
}
waveform.clear();
}
// Clean up
r.Close();
}
TEST_CASE( "Extract waveform data sintel (all channels)", "[libopenshot][audiowaveformer]" )
{
// Create a reader
std::stringstream path;
path << TEST_MEDIA_PATH << "sintel_trailer-720p.mp4";
FFmpegReader r(path.str());
// Create AudioWaveformer and extract a smaller "average" sample set of audio data
AudioWaveformer waveformer(&r);
AudioWaveformData waveform = waveformer.ExtractSamples(-1, 20, false);
CHECK(waveform.rms_samples.size() == 1058);
CHECK(waveform.rms_samples[0] == Approx(0.00001f).margin(0.00001));
CHECK(waveform.rms_samples[1037] == Approx(0.00003f).margin(0.00001));
CHECK(waveform.rms_samples[1038] == Approx(0.0f).margin(0.00001));
waveform.clear();
// Clean up
r.Close();
}
TEST_CASE( "Normalize & scale waveform data piano.wav", "[libopenshot][audiowaveformer]" )
{
// Create a reader
std::stringstream path;
path << TEST_MEDIA_PATH << "piano.wav";
FFmpegReader r(path.str());
// Create AudioWaveformer and extract a smaller "average" sample set of audio data
AudioWaveformer waveformer(&r);
for (auto channel = 0; channel < r.info.channels; channel++) {
// Normalize values and scale them between -1 and +1
AudioWaveformData waveform = waveformer.ExtractSamples(channel, 20, true);
if (channel == 0) {
CHECK(waveform.rms_samples.size() == 107);
CHECK(waveform.rms_samples[0] == Approx(0.07524f).margin(0.00001));
CHECK(waveform.rms_samples[35] == Approx(0.20063f).margin(0.00001));
CHECK(waveform.rms_samples[86] == Approx(0.2094f).margin(0.00001));
CHECK(waveform.rms_samples[87] == Approx(0.0f).margin(0.00001));
}
waveform.clear();
}
// Clean up
r.Close();
}
TEST_CASE( "Extract waveform from image (no audio)", "[libopenshot][audiowaveformer]" )
{
// Create a reader
std::stringstream path;
path << TEST_MEDIA_PATH << "front.png";
FFmpegReader r(path.str());
// Create AudioWaveformer and extract a smaller "average" sample set of audio data
AudioWaveformer waveformer(&r);
AudioWaveformData waveform = waveformer.ExtractSamples(-1, 20, false);
CHECK(waveform.rms_samples.size() == 0);
CHECK(waveform.max_samples.size() == 0);
// Clean up
r.Close();
}
TEST_CASE( "AudioWaveformData struct methods", "[libopenshot][audiowaveformer]" )
{
// Create a reader
AudioWaveformData waveform;
// Resize data to 10 elements
waveform.resize(10);
CHECK(waveform.rms_samples.size() == 10);
CHECK(waveform.max_samples.size() == 10);
// Set all values = 1.0
for (auto s = 0; s < waveform.rms_samples.size(); s++) {
waveform.rms_samples[s] = 1.0;
waveform.max_samples[s] = 1.0;
}
CHECK(waveform.rms_samples[0] == Approx(1.0f).margin(0.00001));
CHECK(waveform.rms_samples[9] == Approx(1.0f).margin(0.00001));
CHECK(waveform.max_samples[0] == Approx(1.0f).margin(0.00001));
CHECK(waveform.max_samples[9] == Approx(1.0f).margin(0.00001));
// Scale all values by 2
waveform.scale(10, 2.0);
CHECK(waveform.rms_samples.size() == 10);
CHECK(waveform.max_samples.size() == 10);
CHECK(waveform.rms_samples[0] == Approx(2.0f).margin(0.00001));
CHECK(waveform.rms_samples[9] == Approx(2.0f).margin(0.00001));
CHECK(waveform.max_samples[0] == Approx(2.0f).margin(0.00001));
CHECK(waveform.max_samples[9] == Approx(2.0f).margin(0.00001));
// Zero out all values
waveform.zero(10);
CHECK(waveform.rms_samples.size() == 10);
CHECK(waveform.max_samples.size() == 10);
CHECK(waveform.rms_samples[0] == Approx(0.0f).margin(0.00001));
CHECK(waveform.rms_samples[9] == Approx(0.0f).margin(0.00001));
CHECK(waveform.max_samples[0] == Approx(0.0f).margin(0.00001));
CHECK(waveform.max_samples[9] == Approx(0.0f).margin(0.00001));
// Access vectors and verify size
std::vector<std::vector<float>> vectors = waveform.vectors();
CHECK(vectors.size() == 2);
CHECK(vectors[0].size() == 10);
CHECK(vectors[0].size() == 10);
// Clear and verify internal data is empty
waveform.clear();
CHECK(waveform.rms_samples.size() == 0);
CHECK(waveform.max_samples.size() == 0);
vectors = waveform.vectors();
CHECK(vectors.size() == 2);
CHECK(vectors[0].size() == 0);
CHECK(vectors[0].size() == 0);
}
|