1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/**
* @file
* @brief Unit tests for openshot::Fraction
* @author Jonathan Thomas <jonathan@openshot.org>
*
* @ref License
*/
// Copyright (c) 2008-2019 OpenShot Studios, LLC
//
// SPDX-License-Identifier: LGPL-3.0-or-later
#include "openshot_catch.h"
#include <map>
#include <vector>
#include <sstream>
#include "Fraction.h"
using namespace openshot;
TEST_CASE( "Constructors", "[libopenshot][fraction]" )
{
// Create a default fraction (should be 1/1)
Fraction f1;
// Check default fraction
CHECK(f1.num == 1);
CHECK(f1.den == 1);
CHECK(f1.ToFloat() == Approx(1.0f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.0f).margin(0.00001));
// reduce fraction
f1.Reduce();
// Check the reduced fraction
CHECK(f1.num == 1);
CHECK(f1.den == 1);
CHECK(f1.ToFloat() == Approx(1.0f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.0f).margin(0.00001));
}
TEST_CASE( "Alt_Constructors", "[libopenshot][fraction]" )
{
// Use the delegating constructor for std::pair
std::pair<int, int> args{24, 1};
Fraction f1(args);
CHECK(f1.num == 24);
CHECK(f1.den == 1);
CHECK(f1.ToFloat() == Approx(24.0f).margin(0.00001));
// Use the delegating constructor for std::vector
std::vector<int> v{30000, 1001};
Fraction f2(v);
CHECK(f2.ToFloat() == Approx(30000.0/1001.0).margin(0.00001));
// Use the delegating constructor for std::map<std::string, int>
std::map<std::string, int> dict;
dict.insert({"num", 24000});
dict.insert({"den", 1001});
Fraction f3(dict);
CHECK(f3.den == 1001);
CHECK(f3.num == 24000);
CHECK(f3.Reciprocal().ToFloat() == Approx(1001.0/24000.0).margin(0.00001));
}
TEST_CASE( "WxH_640_480", "[libopenshot][fraction]" )
{
// Create fraction
Fraction f1(640, 480);
// Check fraction
CHECK(f1.num == 640);
CHECK(f1.den == 480);
CHECK(f1.ToFloat() == Approx(1.33333f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.33333f).margin(0.00001));
// reduce fraction
f1.Reduce();
// Check the reduced fraction
CHECK(f1.num == 4);
CHECK(f1.den == 3);
CHECK(f1.ToFloat() == Approx(1.33333f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.33333f).margin(0.00001));
}
TEST_CASE( "WxH_1280_720", "[libopenshot][fraction]" )
{
// Create fraction
Fraction f1(1280, 720);
// Check fraction
CHECK(f1.num == 1280);
CHECK(f1.den == 720);
CHECK(f1.ToFloat() == Approx(1.77777f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.77777f).margin(0.00001));
// reduce fraction
f1.Reduce();
// Check the reduced fraction
CHECK(f1.num == 16);
CHECK(f1.den == 9);
CHECK(f1.ToFloat() == Approx(1.77777f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.77777f).margin(0.00001));
}
TEST_CASE( "Reciprocal", "[libopenshot][fraction]" )
{
// Create fraction
Fraction f1(1280, 720);
// Check fraction
CHECK(f1.num == 1280);
CHECK(f1.den == 720);
CHECK(f1.ToFloat() == Approx(1.77777f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.77777f).margin(0.00001));
// Get the reciprocal of the fraction (i.e. flip the fraction)
Fraction f2 = f1.Reciprocal();
// Check the reduced fraction
CHECK(f2.num == 720);
CHECK(f2.den == 1280);
CHECK(f2.ToFloat() == Approx(0.5625f).margin(0.00001));
CHECK(f2.ToDouble() == Approx(0.5625f).margin(0.00001));
// Re-Check the original fraction (to be sure it hasn't changed)
CHECK(f1.num == 1280);
CHECK(f1.den == 720);
CHECK(f1.ToFloat() == Approx(1.77777f).margin(0.00001));
CHECK(f1.ToDouble() == Approx(1.77777f).margin(0.00001));
}
TEST_CASE( "Fraction operations", "[libopenshot][fraction]" ) {
openshot::Fraction f1(30, 1);
openshot::Fraction f2(3, 9);
// Multiply two Fractions
auto f3 = f1 * f2;
CHECK(f3.num == 90);
CHECK(f3.den == 9);
// Divide a Fraction by a Fraction
auto f4 = f1 / f2;
CHECK(f4.num == 270);
CHECK(f4.den == 3);
}
TEST_CASE( "Numeric multiplication", "[libopenshot][fraction]" )
{
openshot::Fraction f1(30000, 1001);
const int64_t num1 = 12;
const double num2 = 13.6;
const float num3 = 14.1;
const int num4 = 15;
// operator* with Fraction on LHS
CHECK(f1 * num1 == static_cast<int64_t>(f1.ToDouble() * num1));
CHECK_FALSE(f1 * num1 == f1.ToDouble() * num1);
CHECK_FALSE(f1 * num1 == f1.ToInt() * num1);
CHECK(f1 * num2 == Approx(static_cast<double>(f1.ToDouble() * num2))
.margin(0.0001));
CHECK(f1 * num3 == Approx(static_cast<float>(f1.ToDouble() * num3))
.margin(0.0001));
CHECK(f1 * num4 == static_cast<int>(f1.ToDouble() * num4));
CHECK_FALSE(f1 * num4 == f1.ToDouble() * num4);
CHECK_FALSE(f1 * num4 == f1.ToInt() * num4);
// operator* with Fraction on RHS
CHECK(num1 * f1 == static_cast<int64_t>(f1.ToDouble() * num1));
CHECK_FALSE(num1 * f1 == num1 * f1.ToDouble());
CHECK_FALSE(num1 * f1 == num1 * f1.ToInt());
CHECK(num2 * f1 == Approx(static_cast<double>(f1.ToDouble() * num2))
.margin(0.0001));
CHECK(num3 * f1 == Approx(static_cast<float>(f1.ToDouble() * num3))
.margin(0.0001));
CHECK(num4 * f1 == static_cast<int>(f1.ToDouble() * num4));
CHECK_FALSE(num4 * f1 == num4 * f1.ToDouble());
CHECK_FALSE(num4 * f1 == num4 * f1.ToInt());
// Transposition
CHECK(num1 * f1 == f1 * num1);
CHECK(num2 * f1 == Approx(f1 * num2).margin(0.0001));
CHECK(num3 * f1 == Approx(f1 * num3).margin(0.0001));
CHECK(num4 * f1 == f1 * num4);
}
TEST_CASE( "Numeric division", "[libopenshot][fraction]" )
{
openshot::Fraction f1(24000, 1001);
openshot::Fraction f2(1001, 30000);
const int64_t num1 = 2;
const double num2 = 3.5;
const float num3 = 4.99;
const int num4 = 5;
// operator* with Fraction on LHS
CHECK(f1 / num1 == static_cast<int64_t>(f1.ToDouble() / num1));
CHECK(f1 / num2 == Approx(static_cast<double>(f1.ToDouble() / num2))
.margin(0.0001));
CHECK(f1 / num3 == Approx(static_cast<float>(f1.ToDouble() / num3))
.margin(0.0001));
CHECK(f1 / num4 == static_cast<int>(f1.ToDouble() / num4));
CHECK(f2 / num1 == static_cast<int64_t>(f2.ToDouble() / num1));
CHECK(f2 / num2 == Approx(static_cast<double>(f2.ToDouble() / num2))
.margin(0.0001));
CHECK(f2 / num3 == Approx(static_cast<float>(f2.ToDouble() / num3))
.margin(0.0001));
CHECK(f2 / num4 == static_cast<int>(f2.ToDouble() / num4));
// operator* with Fraction on RHS
CHECK(num1 / f1 == static_cast<int64_t>(num1 / f1.ToDouble()));
CHECK(num2 / f1 == Approx(static_cast<double>(num2 / f1.ToDouble()))
.margin(0.0001));
CHECK(num3 / f1 == Approx(static_cast<float>(num3 / f1.ToDouble()))
.margin(0.0001));
CHECK(num4 / f1 == static_cast<int>(num4 / f1.ToDouble()));
CHECK(num1 / f2 == static_cast<int64_t>(num1 / f2.ToDouble()));
CHECK(num2 / f2 == Approx(static_cast<double>(num2 / f2.ToDouble()))
.margin(0.0001));
CHECK(num3 / f2 == Approx(static_cast<float>(num3 / f2.ToDouble()))
.margin(0.0001));
CHECK(num4 / f2 == static_cast<int>(num4 / f2.ToDouble()));
}
TEST_CASE( "Operator ostream", "[libopenshot][fraction]" )
{
std::stringstream output;
openshot::Fraction f3(30000, 1001);
output << f3;
CHECK(output.str() == "Fraction(30000, 1001)");
}
|