1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/**
* @file
* @brief Unit tests for openshot::SphericalProjection using PNG fixtures
* @author Jonathan Thomas
*
* @ref License
*
* Copyright (c) 2008-2025 OpenShot Studios, LLC
* SPDX-License-Identifier: LGPL-3.0-or-later
*/
#include "Frame.h"
#include "effects/SphericalProjection.h"
#include "openshot_catch.h"
#include <QColor>
#include <QImage>
#include <memory>
#include <cmath>
#include <algorithm>
using namespace openshot;
// Pretty-print QColor on failure
static std::ostream &operator<<(std::ostream &os, QColor const &c) {
os << "QColor(" << c.red() << "," << c.green() << "," << c.blue() << "," << c.alpha() << ")";
return os;
}
// Load a PNG fixture into a fresh Frame
static std::shared_ptr<Frame> loadFrame(const char *filename) {
QImage img(QString(TEST_MEDIA_PATH) + filename);
img = img.convertToFormat(QImage::Format_ARGB32);
auto f = std::make_shared<Frame>();
*f->GetImage() = img;
return f;
}
// Helpers to sample pixels
static QColor centerPixel(SphericalProjection &e, std::shared_ptr<Frame> f) {
auto img = e.GetFrame(f, 1)->GetImage();
int cx = img->width() / 2;
int cy = img->height() / 2;
return img->pixelColor(cx, cy);
}
static QColor offsetPixel(std::shared_ptr<QImage> img, int dx, int dy) {
const int cx = img->width() / 2 + dx;
const int cy = img->height() / 2 + dy;
return img->pixelColor(std::clamp(cx, 0, img->width() - 1),
std::clamp(cy, 0, img->height() - 1));
}
// Loose classifiers for our colored guide lines
static bool is_red(QColor c) { return c.red() >= 200 && c.green() <= 60 && c.blue() <= 60; }
static bool is_yellow(QColor c) { return c.red() >= 200 && c.green() >= 170 && c.blue() <= 60; }
/* ----------------------------------------------------------------------------
* Invert behavior vs Yaw+180 (Equirect input)
* ----------------------------------------------------------------------------
* In both RECT_SPHERE and RECT_HEMISPHERE, Invert should match adding 180° of
* yaw (no mirroring). Compare the center pixel using *fresh* inputs.
*/
TEST_CASE("sphere mode: invert equals yaw+180 (center pixel)", "[effect][spherical]") {
// A: invert=BACK, yaw=0
SphericalProjection eA;
eA.input_model = SphericalProjection::INPUT_EQUIRECT;
eA.projection_mode = SphericalProjection::MODE_RECT_SPHERE;
eA.in_fov = Keyframe(180.0);
eA.fov = Keyframe(90.0);
eA.interpolation = SphericalProjection::INTERP_NEAREST;
eA.invert = SphericalProjection::INVERT_BACK;
eA.yaw = Keyframe(0.0);
// B: invert=NORMAL, yaw=180
SphericalProjection eB = eA;
eB.invert = SphericalProjection::INVERT_NORMAL;
eB.yaw = Keyframe(180.0);
auto fA = loadFrame("eq_sphere.png");
auto fB = loadFrame("eq_sphere.png");
CHECK(centerPixel(eA, fA) == centerPixel(eB, fB));
}
TEST_CASE("hemisphere mode: invert equals yaw+180 (center pixel)", "[effect][spherical]") {
// A: invert=BACK, yaw=0
SphericalProjection eA;
eA.input_model = SphericalProjection::INPUT_EQUIRECT;
eA.projection_mode = SphericalProjection::MODE_RECT_HEMISPHERE;
eA.in_fov = Keyframe(180.0);
eA.fov = Keyframe(90.0);
eA.interpolation = SphericalProjection::INTERP_NEAREST;
eA.invert = SphericalProjection::INVERT_BACK;
eA.yaw = Keyframe(0.0);
// B: invert=NORMAL, yaw=180
SphericalProjection eB = eA;
eB.invert = SphericalProjection::INVERT_NORMAL;
eB.yaw = Keyframe(180.0);
auto fA = loadFrame("eq_sphere.png");
auto fB = loadFrame("eq_sphere.png");
CHECK(centerPixel(eA, fA) == centerPixel(eB, fB));
}
/* ----------------------------------------------------------------------------
* Fisheye input: center pixel should be invariant to yaw/invert
* ----------------------------------------------------------------------------
*/
TEST_CASE("fisheye input: center pixel invariant under invert", "[effect][spherical]") {
SphericalProjection base;
base.input_model = SphericalProjection::INPUT_FEQ_EQUIDISTANT;
base.projection_mode = SphericalProjection::MODE_RECT_SPHERE;
base.in_fov = Keyframe(180.0);
base.fov = Keyframe(180.0);
base.interpolation = SphericalProjection::INTERP_NEAREST;
// Baseline
SphericalProjection e0 = base;
e0.invert = SphericalProjection::INVERT_NORMAL;
e0.yaw = Keyframe(0.0);
QColor c0 = centerPixel(e0, loadFrame("fisheye.png"));
// Invert
SphericalProjection e1 = base;
e1.invert = SphericalProjection::INVERT_BACK;
e1.yaw = Keyframe(0.0);
QColor c1 = centerPixel(e1, loadFrame("fisheye.png"));
// Yaw +45 should point elsewhere
SphericalProjection e2 = base;
e2.invert = SphericalProjection::INVERT_NORMAL;
e2.yaw = Keyframe(45.0);
QColor c2 = centerPixel(e2, loadFrame("fisheye.png"));
CHECK(c0 == c1);
CHECK(c0 != c2);
}
/* ----------------------------------------------------------------------------
* Cache invalidation sanity check
* ----------------------------------------------------------------------------
*/
TEST_CASE("changing properties invalidates cache", "[effect][spherical]") {
SphericalProjection e;
e.input_model = SphericalProjection::INPUT_EQUIRECT;
e.projection_mode = SphericalProjection::MODE_RECT_SPHERE;
e.yaw = Keyframe(45.0);
e.invert = SphericalProjection::INVERT_NORMAL;
e.interpolation = SphericalProjection::INTERP_NEAREST;
QColor c0 = centerPixel(e, loadFrame("eq_sphere.png"));
e.invert = SphericalProjection::INVERT_BACK; // should rebuild UV map
QColor c1 = centerPixel(e, loadFrame("eq_sphere.png"));
CHECK(c1 != c0);
}
/* ----------------------------------------------------------------------------
* Checker-plane fixtures (rectilinear output)
* ----------------------------------------------------------------------------
* Validate the colored guide lines (red vertical meridian at center, yellow
* equator horizontally). We use tolerant classifiers to avoid brittle
* single-pixel mismatches.
*/
TEST_CASE("input models: checker-plane colored guides are consistent", "[effect][spherical]") {
SphericalProjection e;
e.projection_mode = SphericalProjection::MODE_RECT_SPHERE;
e.fov = Keyframe(90.0);
e.in_fov = Keyframe(180.0);
e.yaw = Keyframe(0.0);
e.pitch = Keyframe(0.0);
e.roll = Keyframe(0.0);
e.interpolation = SphericalProjection::INTERP_NEAREST;
auto check_guides = [&](int input_model, const char *file) {
e.input_model = input_model;
auto out = e.GetFrame(loadFrame(file), 1)->GetImage();
// Center column should hit the red meridian (allow 1px tolerance)
// Sample above the equator to avoid overlap with the yellow line
bool center_red = false;
for (int dx = -5; dx <= 5 && !center_red; ++dx)
center_red = center_red || is_red(offsetPixel(out, dx, -60));
REQUIRE(center_red);
// A bit left/right along the equator should be yellow
CHECK(is_yellow(offsetPixel(out, -60, 0)));
CHECK(is_yellow(offsetPixel(out, 60, 0)));
};
SECTION("equirect input") {
check_guides(SphericalProjection::INPUT_EQUIRECT, "eq_sphere_plane.png");
}
SECTION("fisheye equidistant input") {
check_guides(SphericalProjection::INPUT_FEQ_EQUIDISTANT, "fisheye_plane_equidistant.png");
}
SECTION("fisheye equisolid input") {
check_guides(SphericalProjection::INPUT_FEQ_EQUISOLID, "fisheye_plane_equisolid.png");
}
SECTION("fisheye stereographic input") {
check_guides(SphericalProjection::INPUT_FEQ_STEREOGRAPHIC, "fisheye_plane_stereographic.png");
}
SECTION("fisheye orthographic input") {
check_guides(SphericalProjection::INPUT_FEQ_ORTHOGRAPHIC, "fisheye_plane_orthographic.png");
}
}
/* ----------------------------------------------------------------------------
* Fisheye output modes from equirect plane
* ----------------------------------------------------------------------------
* - Center pixel should match the rect view's center (same yaw).
* - Corners are outside the fisheye disk and should be fully transparent.
*/
TEST_CASE("output fisheye modes: center matches rect view, corners outside disk", "[effect][spherical]") {
// Expected center color using rectilinear view
SphericalProjection rect;
rect.input_model = SphericalProjection::INPUT_EQUIRECT;
rect.projection_mode = SphericalProjection::MODE_RECT_SPHERE;
rect.in_fov = Keyframe(180.0);
rect.fov = Keyframe(90.0);
rect.interpolation = SphericalProjection::INTERP_NEAREST;
QColor expected_center = centerPixel(rect, loadFrame("eq_sphere_plane.png"));
auto verify_mode = [&](int mode) {
SphericalProjection e;
e.input_model = SphericalProjection::INPUT_EQUIRECT;
e.projection_mode = mode; // one of the fisheye outputs
e.in_fov = Keyframe(180.0);
e.fov = Keyframe(180.0);
e.interpolation = SphericalProjection::INTERP_NEAREST;
auto img = e.GetFrame(loadFrame("eq_sphere_plane.png"), 1)->GetImage();
// Center matches rect view
CHECK(is_red(expected_center) == is_red(offsetPixel(img, 0, 0)));
// Corners are fully outside disk => transparent black
QColor transparent(0,0,0,0);
QColor tl = offsetPixel(img, -img->width()/2 + 2, -img->height()/2 + 2);
QColor tr = offsetPixel(img, img->width()/2 - 2, -img->height()/2 + 2);
QColor bl = offsetPixel(img, -img->width()/2 + 2, img->height()/2 - 2);
QColor br = offsetPixel(img, img->width()/2 - 2, img->height()/2 - 2);
CHECK(tl == transparent);
CHECK(tr == transparent);
CHECK(bl == transparent);
CHECK(br == transparent);
};
verify_mode(SphericalProjection::MODE_FISHEYE_EQUIDISTANT);
verify_mode(SphericalProjection::MODE_FISHEYE_EQUISOLID);
verify_mode(SphericalProjection::MODE_FISHEYE_STEREOGRAPHIC);
verify_mode(SphericalProjection::MODE_FISHEYE_ORTHOGRAPHIC);
}
|