1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
#!/usr/bin/env python3
mod_license = """
/*
* Copyright (C) 2011-2016 Sylvain Munaut <tnt@246tNt.com>
* Copyright (C) 2016 sysmocom s.f.m.c. GmbH
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
"""
import sys, os, math, argparse
from functools import reduce
import conv_codes_gsm
class ConvolutionalCode(object):
def __init__(self, block_len, polys, name,
description = None, puncture = [], term_type = None,
vec_in = None, vec_out = None):
# Save simple params
self.block_len = block_len
self.k = 1
self.puncture = puncture
self.rate_inv = len(polys)
self.term_type = term_type
self.vec_in = vec_in
self.vec_out = vec_out
# Infos
self.name = name
self.description = description
# Handle polynomials (and check for recursion)
self.polys = [(1, 1) if x[0] == x[1] else x for x in polys]
# Determine the polynomial degree
for (x, y) in polys:
self.k = max(self.k, int(math.floor(math.log(max(x, y), 2))))
self.k = self.k + 1
self.poly_divider = 1
rp = [x[1] for x in self.polys if x[1] != 1]
if rp:
if not all([x == rp[0] for x in rp]):
raise ValueError("Bad polynomials: "
"Can't have multiple different divider polynomials!")
if not all([x[0] == 1 for x in polys if x[1] == 1]):
raise ValueError("Bad polynomials: "
"Can't have a '1' divider with a non '1' dividend "
"in a recursive code")
self.poly_divider = rp[0]
@property
def recursive(self):
return self.poly_divider != 1
@property
def _state_mask(self):
return (1 << (self.k - 1)) - 1
def next_state(self, state, bit):
nb = combine(
(state << 1) | bit,
self.poly_divider,
self.k,
)
return ((state << 1) | nb) & self._state_mask
def next_term_state(self, state):
return (state << 1) & self._state_mask
def next_output(self, state, bit, ns = None):
# Next state bit
if ns is None:
ns = self.next_state(state, bit)
src = (ns & 1) | (state << 1)
# Scan polynomials
rv = []
for p_n, p_d in self.polys:
if self.recursive and p_d == 1:
# No choice ... (systematic output in recursive case)
o = bit
else:
o = combine(src, p_n, self.k)
rv.append(o)
return rv
def next_term_output(self, state, ns = None):
# Next state bit
if ns is None:
ns = self.next_term_state(state)
src = (ns & 1) | (state << 1)
# Scan polynomials
rv = []
for p_n, p_d in self.polys:
if self.recursive and p_d == 1:
# Systematic output are replaced when in 'termination' mode
o = combine(src, self.poly_divider, self.k)
else:
o = combine(src, p_n, self.k)
rv.append(o)
return rv
def next(self, state, bit):
ns = self.next_state(state, bit)
nb = self.next_output(state, bit, ns = ns)
return ns, nb
def next_term(self, state):
ns = self.next_term_state(state)
nb = self.next_term_output(state, ns = ns)
return ns, nb
def _print_term(self, fi, num_states, pack = False):
items = []
for state in range(num_states):
if pack:
x = pack(self.next_term_output(state))
else:
x = self.next_term_state(state)
items.append(x)
# Up to 12 numbers should be placed per line
print_formatted(items, "%3d, ", 12, fi)
def _print_x(self, fi, num_states, pack = False):
items = []
for state in range(num_states):
if pack:
x0 = pack(self.next_output(state, 0))
x1 = pack(self.next_output(state, 1))
else:
x0 = self.next_state(state, 0)
x1 = self.next_state(state, 1)
items.append((x0, x1))
# Up to 4 blocks should be placed per line
print_formatted(items, "{ %2d, %2d }, ", 4, fi)
def _print_puncture(self, fi):
# Up to 12 numbers should be placed per line
print_formatted(self.puncture, "%3d, ", 12, fi)
def print_description(self, fi, brief = False):
if brief is True:
fi.write("/*! structure describing %s.\n"
% self.description[0])
for line in self.description[1:]:
fi.write(" * %s\n" % line)
else:
fi.write("/**\n")
for line in self.description:
fi.write(" * %s\n" % line)
fi.write(" */\n")
def print_state_and_output(self, fi):
pack = lambda n: \
sum([x << (self.rate_inv - i - 1) for i, x in enumerate(n)])
num_states = 1 << (self.k - 1)
fi.write("static const uint8_t %s_state[][2] = {\n" % self.name)
self._print_x(fi, num_states)
fi.write("};\n\n")
fi.write("static const uint8_t %s_output[][2] = {\n" % self.name)
self._print_x(fi, num_states, pack)
fi.write("};\n\n")
if self.recursive:
fi.write("static const uint8_t %s_term_state[] = {\n" % self.name)
self._print_term(fi, num_states)
fi.write("};\n\n")
fi.write("static const uint8_t %s_term_output[] = {\n" % self.name)
self._print_term(fi, num_states, pack)
fi.write("};\n\n")
def gen_tables(self, pref, fi, shared_tables = None):
# Do not print shared tables
if shared_tables is None:
self.print_state_and_output(fi)
table_pref = self.name
else:
table_pref = shared_tables
if len(self.puncture):
fi.write("static const int %s_puncture[] = {\n" % self.name)
self._print_puncture(fi)
fi.write("};\n\n")
# Write description as a multi-line comment
if self.description is not None:
self.print_description(fi)
# Print a final convolutional code definition
fi.write("const struct osmo_conv_code %s_%s = {\n" % (pref, self.name))
fi.write("\t.N = %d,\n" % self.rate_inv)
fi.write("\t.K = %d,\n" % self.k)
fi.write("\t.len = %d,\n" % self.block_len)
fi.write("\t.next_output = %s_output,\n" % table_pref)
fi.write("\t.next_state = %s_state,\n" % table_pref)
if self.term_type is not None:
fi.write("\t.term = %s,\n" % self.term_type)
if self.recursive:
fi.write("\t.next_term_output = %s_term_output,\n" % table_pref)
fi.write("\t.next_term_state = %s_term_state,\n" % table_pref)
if len(self.puncture):
fi.write("\t.puncture = %s_puncture,\n" % self.name)
fi.write("};\n\n")
def calc_out_len(self):
out_len = self.block_len * self.rate_inv
# By default CONV_TERM_FLUSH
if self.term_type is None:
out_len += self.rate_inv * (self.k - 1)
if len(self.puncture):
out_len -= len(self.puncture) - 1
return out_len
def gen_test_vector(self, fi, prefix):
code_name = "%s_%s" % (prefix, self.name)
fi.write("\t{\n")
fi.write("\t\t.name = \"%s\",\n" % code_name)
fi.write("\t\t.code = &%s,\n" % code_name)
fi.write("\t\t.in_len = %d,\n" % self.block_len)
fi.write("\t\t.out_len = %d,\n" % self.calc_out_len())
# Print pre computed vectors if preset
if self.vec_in is not None and self.vec_out is not None:
fi.write("\t\t.has_vec = 1,\n")
fi.write("\t\t.vec_in = {\n")
print_formatted(self.vec_in, "0x%02x, ", 8, fi, indent = "\t\t\t")
fi.write("\t\t},\n")
fi.write("\t\t.vec_out = {\n")
print_formatted(self.vec_out, "0x%02x, ", 8, fi, indent = "\t\t\t")
fi.write("\t\t},\n")
else:
fi.write("\t\t.has_vec = 0,\n")
fi.write("\t\t.vec_in = { },\n")
fi.write("\t\t.vec_out = { },\n")
fi.write("\t},\n")
poly = lambda *args: sum([(1 << x) for x in args])
def combine(src, sel, nb):
x = src & sel
fn_xor = lambda x, y: x ^ y
return reduce(fn_xor, [(x >> n) & 1 for n in range(nb)])
def print_formatted(items, format, count, fi):
counter = 0
# Print initial indent
fi.write("\t")
for item in items:
if counter > 0 and counter % count == 0:
fi.write("\n\t")
fi.write(format % item)
counter += 1
fi.write("\n")
def print_shared(fi, shared_polys):
for (name, polys) in shared_polys.items():
# HACK
code = ConvolutionalCode(0, polys, name = name)
code.print_state_and_output(fi)
def open_for_writing(parent_dir, base_name):
path = os.path.join(parent_dir, base_name)
if not os.path.isdir(parent_dir):
os.makedirs(parent_dir)
return open(path, 'w')
def generate_codes(codes, path, prefix, name):
# Open a new file for writing
f = open_for_writing(path, name)
f.write(mod_license + "\n")
f.write("#include <stdint.h>\n")
f.write("#include <osmocom/core/conv.h>\n\n")
sys.stderr.write("Generating convolutional codes...\n")
# Print shared tables first
if hasattr(codes, "shared_polys"):
print_shared(f, codes.shared_polys)
# Generate the tables one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' definition\n" % code.name)
# Check whether shared polynomials are used
shared = None
if hasattr(codes, "shared_polys"):
for (name, polys) in codes.shared_polys.items():
if code.polys == polys:
shared = name
break
code.gen_tables(prefix, f, shared_tables = shared)
def generate_vectors(codes, path, prefix, name, inc = None):
# Open a new file for writing
f = open_for_writing(path, name)
f.write(mod_license + "\n")
# Print includes
if inc is not None:
for item in inc:
f.write("%s\n" % item)
f.write("#include <osmocom/core/conv.h>\n")
f.write("#include \"conv.h\"\n\n")
sys.stderr.write("Generating test vectors...\n")
vec_count = len(codes.conv_codes)
f.write("const int %s_vectors_len = %d;\n\n"
% (prefix, vec_count))
f.write("const struct conv_test_vector %s_vectors[%d] = {\n"
% (prefix, vec_count))
# Generate the vectors one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' test vector\n" % code.name)
code.gen_test_vector(f, prefix)
f.write("};\n")
def generate_header(codes, path, prefix, name, description = None):
# Open a new file for writing
f = open_for_writing(path, name)
# Print license and includes
f.write(mod_license + "\n")
f.write("#pragma once\n\n")
f.write("#include <stdint.h>\n")
f.write("#include <osmocom/core/conv.h>\n\n")
# Print general file description if preset
if description is not None:
f.write("/*! \\file %s.h\n" % prefix)
f.write(" * %s\n" % description)
f.write(" */\n\n")
sys.stderr.write("Generating header file...\n")
# Generate declarations one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' declaration\n" % code.name)
code.print_description(f, True)
f.write("extern const struct osmo_conv_code %s_%s;\n\n"
% (prefix, code.name))
def parse_argv():
parser = argparse.ArgumentParser()
# Positional arguments
parser.add_argument("action",
help = "what to generate",
choices = ["gen_codes", "gen_vectors", "gen_header"])
parser.add_argument("family",
help = "convolutional code family",
choices = ["gsm"])
# Optional arguments
parser.add_argument("-p", "--prefix",
help = "internal naming prefix")
parser.add_argument("-n", "--target-name",
help = "target name for generated file")
parser.add_argument("-P", "--target-path",
help = "target path for generated file")
return parser.parse_args()
if __name__ == '__main__':
# Parse and verify arguments
argv = parse_argv()
path = argv.target_path or os.getcwd()
inc = None
# Determine convolutional code family
if argv.family == "gsm":
codes = conv_codes_gsm
prefix = argv.prefix or "gsm0503"
inc = [ "#include <osmocom/gsm/gsm0503.h>" ]
# What to generate?
if argv.action == "gen_codes":
name = argv.target_name or prefix + "_conv.c"
generate_codes(codes, path, prefix, name)
elif argv.action == "gen_vectors":
name = argv.target_name or prefix + "_test_vectors.c"
generate_vectors(codes, path, prefix, name, inc)
elif argv.action == "gen_header":
name = argv.target_name or prefix + ".h"
generate_header(codes, path, prefix, name)
sys.stderr.write("Generation complete.\n")
|