
Analysis of ESAPI 2.0's Key Derivation Function

Jeffrey Walton
jeffrey.walton@softwareintegrity.com



1. Introduction

OWASP is the Open Web Application Security Project and located at http://www.owasp.org/. 
The project, among other goals, encourages sound use cryptography by users who might be 
less savvy. ESAPI is OWASP's Enterprise Security API. The API provides implementations in a 
number of cryptographic domains, such as symmetric encryption, hashing and key derivation. 
This document will attempt to provide a reasonable analysis of ESAPI's Key Derivation 
Function (KDF), CryptoHelper.computeDerivedKey.

CryptoHelper.computeDerivedKey (hereafter simply computeDerivedKey) is a KDF which 
makes itself available via a public interface for crypto-savvy users. Internally, this static Java 
method is primarily used in  ESAPI's crypto reference implementation class, JavaEncryptor. 
Most library users will indirectly use the KDF via JavaEncryptor. A listing of ESAPI 2.0 
symmetric encryption routines can be found at ESAPI 2.0 Symmetric Encryption User Guide, 
http://owasp-esapi-java.googlecode.com/svn/trunk/documentation/esapi4java-core-2.0-
symmetric-crypto-user-guide.html.

Reasonable is subjective and surely open for debate. In the past, implementers used NIST SP 
800-56A, SP 800-56B, and more recently SP 800-108 (among other standard body 
recommendations) to help determine the fitness of a particular KDF algorithm.

Early KDFs did not differentiate between entropy extraction and expansion during key 
derivation. A number functions in the of 'Extraction-then-Expansion' family of functions have 
recently been proposed. Under this model, entropy extraction and key derivation are distinct 
processes. From RFC 5869, HMAC-based Extract-and-Expand Key Derivation Function 
(HKDF):

HKDF follows the "extract-then-expand" paradigm, where the KDF logically 
consists of two modules. The first stage takes the input keying material and 
"extracts" from it a fixed-length pseudorandom key K. The second stage 
"expands" the key K into several additional pseudorandom keys (the output of 
the KDF).

Since ESAPI's implementation is not of the 'Extract-then-Expand' family, this document will 
attempt to analyze computeDerivedKey from a NIST SP 800-108 perspective. ESAPI's 
computeDerivedKey appears to be most similar in design to SP 800-108's KDF in Counter 
Mode described in Section 5.1.

Finally, the examination does not include ESAPI's security as a whole, security levels, caller’s 
use of the function, or other tangential functionality. 

Page 2 – 01/08/11

http://www.owasp.org/
http://owasp-esapi-java.googlecode.com/svn/trunk/documentation/esapi4java-core-2.0-symmetric-crypto-user-guide.html
http://owasp-esapi-java.googlecode.com/svn/trunk/documentation/esapi4java-core-2.0-symmetric-crypto-user-guide.html


2. Analysis

The digested Java version of the computeDerivedKey implementation is shown in Listing 1 
below. Error checking has been omitted for clarity. The heart of the implementation is an 
HMAC which supplies at least the requested number of bits to the caller.

public static SecretKey computeDerivedKey(SecretKey keyDerivationKey,
    int keySize, String purpose)
{
      keySize = ( keySize + 7 ) / 8;    // Bits to octets

      byte[] derivedKey = new byte[ keySize ]; 
      byte[] inputBytes = purpose.getBytes("UTF­8");      

      SecretKey sk = new SecretKeySpec(keyDerivationKey.getEncoded(), "HmacSHA1");

      Mac hmac = Mac.getInstance("HmacSHA1");
      hmac.init(sk);

      int totalCopied = 0;
      int destPos = 0;
      int len = 0;

      do {
            byte[] tmpKey = hmac.doFinal(inputBytes);

            if ( tmpKey.length >= keySize ) {
                  len = keySize;
            } else {
                  len = Math.min(tmpKey.length, keySize ­ totalCopied);
            }

            System.arraycopy(tmpKey, 0, derivedKey, destPos, len);

            inputBytes = tmpKey;
            totalCopied += tmpKey.length;
            destPos += len;

      } while( totalCopied < keySize );

      return new SecretKeySpec(derivedKey, keyDerivationKey.getAlgorithm());
}

Listing 1: Digested computeDerivedKey

In Listing 1, keyDerivationKey is a function parameter which is a shared secret. The 
keyDerivationKey is used as a key for the HMAC. keySize is specified in bits by the caller but 
immediately converted to an octet count (i.e., the number of 8 bit bytes) for internal use. 
purpose is also a parameter and indicates the intended use of the derived key – encryption or 
authenticity. Ultimately, purpose is used as a label to the HMAC.

The use of a HMAC is a solid design decision. According to Dodis, Gennaro, Håstad, 
Krawczyk, and Rabin in Randomness Extraction and Key derivation Using the CBC, Cascade, 
and HMAC Modes: “HMAC is the most widely used pseudorandom mode based on functions 

Page 3 – 01/08/11



such as MD5 or SHA”. Dodis, et al then proceed to offer formal proofs for its suitability in key 
derivation.

In addition, a HMAC does not require cascade chaining (as in the use of block ciphers), which 
simplifies the implementation since an HMAC is, by design, a cascade of compression 
functions. Dodis, et al formally define the HMAC family in section 5 of their paper.

Using keyDerivationKey to key the HMAC is required by SP800-108 (cf., Section 4, 
Pseudorandom Function (PRF), symbol KI ). This is clearly performed during the execution of:

SecretKey sk = new SecretKeySpec(keyDerivationKey.getEncoded(), "HmacSHA1");

The do-while loop generates the actual bytes of the derived key which is returned to the caller. 
If the output size of the HMAC matches or exceeds the size of the parameter keySize, 
computeDerivedKey will perform a single iteration and fulfill the caller's request. If the caller 
requests a keySize larger than the HMAC's block size, iterations will be performed until enough 
output from the HMAC has been gathered.

In the case that not all bytes from the output of a HMAC invocation are required to fulfill a 
request, the leftmost bytes are taken from the output. This is consistent with traditional use of a 
truncated output.

Finally, non-overlapping segments are used to fulfill requests, so computeDerivedKey does not 
violate SP 800-108 (or other standards): “[keying material] is a binary string, such that any 
non-overlapping segments of the string with the required lengths can be used as symmetric 
cryptographic keys.”

Upon examining the use of the HMAC in the do-while loop, a call is made to doFinal on the 
instance of the HMAC object to extract bytes:

tmpKey = hmac.doFinal(inputBytes);

tmpKey is a temporary array of bytes, which is copied into the array which is eventually 
returned to the caller. inputBytes is a binary encoding of the parameter purpose, which is the 
traditional label. Notably absent from the call are the iteration count, context, and other 
adornments which usually accompany an iteration of a PRF.

NIST's Special Publication 800-108 performs the following in the iterative loop of section 5.1:

n := number of blocks required to fulfill request
for i = 1 to n, do

    K(i) := PRF(KI, [i]2 || Label || 0x00 || Context || [L]2)
    result(i) := result(i­1) || K(i)

end

where '||' is represents bit string concatenation.

Page 4 – 01/08/11



In the above, [i]2 is the big-endian binary representation of the iteration, and [L]2 is the bits 
requested by the caller.

The above pseudo-code roughly translates to the following, where derivedKey is the leftmost L 
bits of result. Note that the only parameter which changes between invocations is the binary 
representation of i.

n := number of blocks required to fulfill request
hmac.init(sk)
for i = 1 to n, do

    K(i) := hmac.DoFinal([i]2 || Label || 0x00 || Context || [L]2)
    result(i) := result(i­1) || K(i)

end

In section 3.2 of SP 800-108, NIST uses {X} to indicate optional data (the emphasis is on the 
curly braces). Unfortunately, the iteration, null byte, context, and bit length are not optional.

Three of the missing fields are easily correctable and deserve no further study. However, 
Context appears to complicate matters. SP 800-108 defines the context as:

A binary string containing the information related to the derived keying material. It 
may include identities of parties who are deriving and/or using the derived keying 
material and, optionally, a nonce known by the parties who derive the keys.

From Section 7.6 of SP 800-108 on Context Binding, Context appears to be an optional field 
since NIST chose the use of SHOULD versus MUST:

Derived keying material should be bound to all relying entities and other 
information to identify the derived keying material. This is called context binding. 
In particular, the identity (or identifier, as the term is defined in [NIST SP 800-
56A , sic] and [NIST SP 800-56B , sic]) of each entity that will access (meaning 
derive, hold, use, and/or distribute) any segment of the keying material should be 
included in the Context string input to the KDF, provided that this information is 
known by each entity who derives the keying material. 

For completeness, SP 800-56A uses AlgorithmID (public), PartyUInfo (public), PartyVInfo 
(public), and optional public and private information for Context. See Appendix A of this 
document for the relevant partial text of SP 800-56A.

Page 5 – 01/08/11



Turning to the ISO/IEC, the definition of a KDF1 from ISO 18033-2, Section 6.2.2.1 is shown 
below.I2OSP is Integer to Octet String Primitive, which is the ISO/IEC's equivalent to a NIST 
binary string.

For an octet string x and a non-negative integer l, KDF1 (x, l) is defined to be the 
first l octets of

    Hash.eval(x ║ I2OSP(0, 4))   ║ ∙∙∙   ║ Hash.eval(x   ║ I2OSP(k−1, 4))

where

    k = ceiling(l/Hash.len)

The ISO/IEC's KDF2 is a similar construction (refer to section 6.2.3.1): rather than iterating 
from 0 to k – 1, KDF2 iterates from 1 to k. Under both ISO/IEC's constructions, the iteration is 
used as input into the hash function, and context data is not specified.

PKCS #5 and RFC 2898 (i.e., PBKDF v2) do not appear to lend assistance since the initial 
secret is a low entropy password, and not a random number (generated from a 
cryptographically secure pseudorandom number generator) or shared secret (for example, ss 
= gxy from a successful Diffie-Hellman exchange). It is not clear if the leap can be made from 
PBKDF to KDF. However, it is noted that even PBKDF v2 processes the iteration count in the 
calculation of the derived key.

SP 800-135 retrofits “Extract-then-Expand” functionality into existing protocols, such as IKE 
and TLS. Under the 135 Special Publication, context is already specified via the traditional 
design and use of a KDF, and retrofitting does not relieve the need for context required by the 
underlying protocol.

Page 6 – 01/08/11



3. Recommendations

First, I would recommend a professional cryptographer audit the implementation for cross 
validation. In the absence of a seasoned professional, I would recommend partial, if not full, 
compliance with SP 800-108. Compliance with 108 appears to be relatively easy.

Based on NIST 800-108 and ISO/IEC KDF1 and KDF2, context data is not strictly required. 
However, NIST 800-56A and 800-56B and the IETF are more stringent. Observing past due 
diligence from NIST and the IETF, and in the spirit of “uniqueness of derivation per KDF 
instance invocation”, adding an additional optional parameter to computeDerivedKey would 
probably be a very good design decision. Caller's which could supply additional uniqueness 
would be allowed to do so; while callers which lacked the uniqueness would not be required to 
retrofit existing implementations for the enhanced interface.

ISO/IEC 18033, ANSI X9, and P1363 specify KDFs which might prove useful for context 
inspiration. At minimum, any number of the aforementioned standard bodies might provide 
concrete requirements for the context parameter, or guidance on the selection of operation 
parameters used as a context.

For those who wish to use the optional context data: if computeDerivedKey was used in a 
Diffie-Hellman exchange, the public keys of each party could be used as context. Distant 
memories seem to recall an ASN.1 OID indicating usage was also used for context in a KDF. 
Additional context candidates are public salts, nonces, initialization vectors, and public keys. 
Indeed, public identities are specifically mentioned in NIST's Special Publications (among other 
data).

In the case that context is not shared between two parties (i.e., it’s a local key used only by a 
database), consider using the context parameter as an opportunity to tie the database to the 
installation or server. An encoding of the database path and name would probably transform 
nicely into a relatively unique, distinguishing value. Tying the database to a unique server 
identifier (i.e., UUID or GUID) would help deter copy/paste attacks.

In addition to building a conforming KDF, OWASP also has the choice to use HKDF specified 
in RFC 5869 or upcoming SP 800-56C. For RFC 5869, the context is an optional parameter 
and represents current state of the art.

Finally, OWASP has the option to accept computeDerivedKey as-is, discard SP 800-108 and 
other standard recommendations, and do nothing. This option has the benefits of reduced 
complexity from an implementor's viewpoint; and interoperability for existing implementations 
in the field.

4. Acknowledgments

I would like to thank Dr. Brooke Stephens, Dr. David Wagner, and Kevin Wall for helpful 
comments.

Page 7 – 01/08/11



Normative References

 NIST Special Publication 800-135, Recommendation for Existing Application-Specific 
Key Derivation Functions

 NIST Special Publication 800-108, Recommendation for Key Derivation Using 
Pseudorandom Functions

 NIST SP 800-56B, Recommendation for Pair-Wise Key Establishment Schemes Using 
 Integer Factorization Cryptography 
 NIST Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment 

Schemes Using Discrete Logarithm Cryptography
 ISO/IEC 18033-2 , Encryption Algorithms – Part 2: Asymmetric Ciphers
 RFC 5869, HMAC-based Extract-and-Expand Key Derivation Function (HKDF)
 Krawczyk, Cryptographic Extraction and Key Derivation: The HKDF Scheme
 Dodis, Gennaro, Håstad, Krawczyk, and Rabin, Randomness Extraction and Key 

derivation Using the CBC, Cascade, and HMAC Modes
 Chevassut, Key Derivation and Randomness Extraction

Page 8 – 01/08/11

http://eprint.iacr.org/2005/061.pdf
http://eprint.iacr.org/2005/061.pdf
http://eprint.iacr.org/2005/061.pdf


Appendix A - Excerpt from NIST SP 800-56A

3 OtherInfo: A bit string equal to the following concatenation:

AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo }

   where the subfields are defined as follows:

3.1 AlgorithmID: A bit string that indicates how the derived keying material will be 
parsed and for which algorithm(s) the derived secret keying material will be 
used. For example, AlgorithmID might indicate that bits 1-80 are to be used 
as an 80-bit HMAC key and that bits 81-208 are to be used as a 128-bit AES 
key.

3.2 PartyUInfo: A bit string containing public information that is required by the 
application using this KDF to be contributed by party U to the key derivation 
process. At a minimum, PartyUInfo shall include IDU, the identifier of party U. 
See the notes below.

3.3 PartyVInfo: A bit string containing public information that is required by the 
application using this KDF to be contributed by party V to the key derivation 
process. At a minimum, PartyVInfo shall include IDV, the identifier of party V. 
See the notes below.

3.4 (Optional) SuppPubInfo: A bit string containing additional, mutually-known 
public information.

3.5 (Optional) SuppPrivInfo: A bit string containing additional, mutually-known 
private information (for example, a shared secret symmetric key that has 
been communicated through a separate channel).

Each of the three subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the concatenation 
of an application-specific, fixed-length sequence of substrings of information. Each substring 
representing a separate unit of information shall have one of these two formats: Either it is a 
fixed-length bit string, or it has the form Datalen || Data, where Data is a variable-length string 
of zero or more bytes, and Datalen is a fixed-length, big-endian counter that indicates the 
length (in bytes) of Data. (In this variable-length format, a null string of data shall be 
represented by using Datalen to indicate that Data has length zero.)

An application using this KDF shall specify the ordering and number of the separate 
information substrings used in each of the subfields AlgorithmID, PartyUInfo, and PartyVInfo, 
and shall also specify which of the two formats (fixed-length or variable-length) is used for 
each substring. The application shall specify the lengths for all fixed-length quantities, including 
the Datalen counters.

...

Page 9 – 01/08/11


