OWASP ESAPI for JavaEE 2.0

Design Goals in OWASP ESAPI Cryptography

Author: Kevin W. Wall <kevin.w.wall@gmail.com>

[image: image1.png]() (DO




Foreword

This document summarizes the major design goals of the cryptographic-related features of version 2.0-rc3 and later of the Java EE language version of the OWASP Enterprise Security API  (ESAPI). 

We’d Like to Hear from You

Further development of ESAPI occurs through mailing list discussions and occasional workshops, and suggestions for improvement are welcome. Please address comments and questions concerning the API and this document to the ESAPI developers mailing list, esapi-dev@lists.owasp.org

 HYPERLINK "mailto:esapi-users@lists.owasp.org"
.
Copyright and License

Copyright © 2010 The OWASP Foundation.

This document is released under the Creative Commons Attribution ShareAlike 3.0 license. For any reuse or distribution, you must make clear to others the license terms of this work.

Table of Contents

1 About Cryptography in ESAPI for Java EE
1
2 Design Goals
2
2.1 Summary of Design Goals
2
2.2 Design Goals Explained
2
2.2.1 Secure Against All Known Cryptographic Attacks
2
2.2.2 Portable Across Different Hardware Architectures
3
2.2.3 Portable Across the Broad Range of ESAPI-Supported Programming Languages
3
2.2.4 Widespread Support for Needed Cryptographic Primitives
3
2.2.5 ESAPI Cryptographic API Should Be Simple To Use In A Secure Manner To Do A Broad Range Of Cryptographic-Related Functionality
4
2.2.6 Serialization Of The “Ciphertext” Representation Should Be “Self-Contained”
5
2.2.7 Representation Of The Serialization Of The “Ciphertext” Representation Should Be As Compact As Possible
5
2.2.8 Minimal Additional Processing Overhead In Interacting With This Encrypted Serialized Data
5
2.2.9 Java Implementation Of ESAPI Crypto Should Only Require The Standard Out-Of-The-Box JDK Install
6
2.2.10 Extensibility and Backward Compatibility
6
3 Important Design Details
8
3.1 Ensure Message Authenticity
8
3.1.1 Approaches to Applying a Message Authentication Code
8
3.1.2 Calculating a Shared Secret Key for the MAC
9
3.1.3 Encoded Serialization of the CipherText
9
3.2 Compatibility with Legacy Code
10
4 Road Map for Subsequent ESAPI JavaEE Releases
12
4.1 Planned for ESAPI 2.1
12
4.2 Planned for ESAPI 3.0
12
5 References
14



1 About Cryptography in ESAPI for Java EE

One of the major features in the 1.4 and 2.0 releases of ESAPI for Java EE include was to provide secure, yet easy to use interfaces for cryptographic features such as symmetric encryption and decryption, signing and validating digital signatures, secure hashing, etc.

While the ease of use for this functionality was certainly there, the security unfortunately was lacking in many ways.

Consequently, starting with ESAPI for JavaEE 2.0-rc3, the cryptographic interfaces were partially redesigned and for the most part, completely rewritten.

While the shortcomings of symmetric encryption have been described elsewhere (see for example [1]) Why Is OWASP Changing ESAPI Encryption?), the design goals and decisions that drove these design changes were never formally documented outside of the ESAPI Developers mailing list and some private email messages. This is an attempt to formalize some of those major design goals and to outline some of the major design aspects of ESAPI cryptographic related functionality.

2 Design Goals

The design goals of ESAPI crypto code is summarized below, followed by a more detailed explanation. It is important to realize that during the actual design and implementation, there were many design trade-offs, as many of these design goals are diametrically opposed.

2.1 Summary of Design Goals

1. Secure against all known cryptographic attacks.

2. Portable across different hardware architectures.

3. Portable across the broad range of ESAPI-supported programming languages.

4. Design and implementation should have widespread support for any cryptographic primitives used.

5. API should be simple to use in a secure manner to do a broad range of cryptographic-related functionality.

6. Serialization of the “ciphertext” representation should be “self-contained”.

7. Serialization of the “ciphertext” representation should be as compact as possible.

8. Minimal additional processing overhead in interacting with this encrypted serialized data.

9. For the Java implementation of ESAPI, the ESAPI crypto should only require the standard out-of-the-box JDK install.

10. Should be extensible and the extensibility should be able to support backward compatibility with earlier versions except where they conflict with other design goals.

2.2 Design Goals Explained

2.2.1 Secure Against All Known Cryptographic Attacks

The symmetric encryption in ESAPI 1.4 and ESAPI 2.0 up through 2.0-rc2 had

several weaknesses in not only the choices of it cryptographic properties, but also in its implementation. [1] Starting in ESAPI 2.0-rc3, ESAPI's symmetric encryption was totally redesigned to address these issues as well as other commonly known cryptographic attacks caused by improper use of otherwise strong cryptographic ciphers.

Unlike in ESAPI 1.4, ESAPI 2.0 encryption is set up use secure defaults. ESAPI 1.4 used “PBEWithMD5AndDES" by default for symmetric encryption. ESAPI 2.0-rc2 and earlier used 256-bit AES in ECB mode. In nearly all circumstances, both of these are poor choices.

PBEWithMD5AndDES is password-based-encryption that takes a password or pass phrase, uses MD5 to hash it a few thousand  times, and then encrypts it using 56-bit DES in ECB mode. As such, PBEWithMD5AndDES is vulnerable to standard off-line dictionary attacks. Secondly, DES keys are only 56-bit and are clearly in the realm of brute force attacks
. Thirdly, the ECB cipher mode is extremely weak. Not only does ECB mode reveal patterns in the plaintext message, but it also allows block replay attacks. [2]

block replay (avoid ECB), side channel attacks padding oracle (ensure authenticity using ENCRYPT-then-MAC), related key attacks??? (avoid fixed IVs)

2.2.2 Portable Across Different Hardware Architectures

Given that implementations of ESAPI would be running on both 32-bit and 64-bit hardware of both little and big endian architectures, the desire was that the the ESAPI crypto code was easy to port across various platforms. More importantly, it was critical that the serialization of the ciphertext representation be portal across different platforms. That is to say, a ciphertext representation created on a 64-bit SPARC (big-endian) architecture should be able to be decrypted on a 32-bit Intel (little-endian) architecture.

It should be noted that while W3C's XML Encrypt standard satisfies this particular design criteria, it notably does not satisfy others such as #1 (it is vulnerable to padding oracle attacks when the ciphertext needs to be shared with many parties and pairwise encryption is not economical) and #7, and arguably it does not satisfy design criteria #8 either. Cryptographic Message Syntax (CMS) and PKCS#7 were rejected for other reasons (see Section 2.2.4 for details).

2.2.3 Portable Across the Broad Range of ESAPI-Supported Programming Languages

The implementation should be easily portable across the broad range of programming languages that ESAPI currently supports. When the redesign of ESAPI crypto code began at ESAPI (for Java) 2.0-rc2, ESAPI was being implemented for eight different programming languages, including Java.

There was a strong desire that the portion of ESAPI crypto code that was not directly using underlying cryptographic primitives should be straightforward to port from one programming language to another. For instance, the code should be independent of the size of an 'int' (integer) type or whether or not that type was signed or unsigned.

2.2.4 Widespread Support for Needed Cryptographic Primitives

The design and implementation should have widespread support for any cryptographic primitives that might be needed. There should be libraries available (preferably native to the programming language) to support any cryptographic primitives or it should be easy to build in all that is required to support it for all programming languages that ESAPI supports. When such libraries already exist, they should be freely licensed by developers using ESAPI, widely available across a various operating systems and hardware platforms where ESAPI might be used, as well as being fairly easy to use.

This design goal had the greatest impact on restricting the choice of default cipher modes and padding schemes to common ones (e.g., CBC cipher mode and PKCS#5 or PKCS#7 padding scheme) even those others (e.g., CCM or CGM cipher mode) were by more secure defaults. It also had a significant impact on the choice not to use either  CMS (Cryptographic Message Syntax, RFC 5652) or the latest version of PKCS#7 (v1.5) as a representation of the ciphertext serialization. Not only were CMS and PKCS#7 representations much too large (see 2.2.7), but It was also much too complex and it's support was not widespread. And while it would have been nice to used a standardized cryptographic representation, implementing either CMS or the simpler PKCS#7 would have likely required as much code as the rest of the ESAPI crypto code. Because of this, ESAPI arrived at a custom, yet simple encoding serialization scheme. Note however that the use of this current custom serialization scheme does not preclude the use of CMS or XML Encrypt or one of the ASN.1 encoding s, or anything else at some later time or as an additional alternate mechanism.

2.2.5 ESAPI Cryptographic API Should Be Simple To Use In A Secure Manner To Do A Broad Range Of Cryptographic-Related Functionality

It is understood that simplicity of use can be opposed to broad range of use. As an example, we saw this with just the insecure methods to symmetric encryption options in ESAPI 1.4. There, there were two, very simple, methods to encrypt and decrypt:


public String encrypt(String plaintext) throws EncryptionException

which returned base64-encoded ciphertext, and


public String decrypt(String ciphertext)



throws EncryptionException

which returned the original plaintext. Unfortunately, in addition to using insecure options, these methods make it somewhat awkward to encrypt and then decrypt arbitrary byte arrays and also in insisted that all data encrypted use the same encryption key—i.e., the one specified by Encryptor.MasterKey in one's ESAPI.properties file.  At the risk of some additional complexity, these two methods were generalized into:


CipherText encrypt(SecretKey key, PlainText plaintext)


        throws EncryptionException

and


PlainText decrypt(SecretKey key, CipherText ciphertext)


        throws EncryptionException

However, as a compromise, the somewhat simpler:


CipherText encrypt(PlainText plaintext) throws EncryptionException

and


PlainText decrypt(CipherText ciphertext)



throws EncryptionException

are still supported for those who wish to still use Encryptor.MasterKey. But of course, it could also be argued that this makes the Encryptor interface more complex by adding additional methods.

So, balancing simplicity vs. generality is a trade-off. But in the end, security must trump either, and that was why we deprecated the older methods from ESAPI 1.4 and completely dumped the once proposed LegacyJavaEncryptor that would have supported complete backward compatibility at the cost of security. These principles extend not only to encryption, but also to things like digital signatures, hashing, etc. If cryptographic functionality cannot be provided securely (especially in an API promoting itself to be all about “Enterprise Security”), then then should not be provided at all.

2.2.6 Serialization Of The “Ciphertext” Representation Should Be “Self-Contained”

The ciphertext representation should be able to be "self-contained" in that it should store everything that is needed to decrypt it into the original plaintext except for the encryption key itself. This would include the cipher algorithm, the cipher padding scheme, the initialization vector (when applicable), and any message authentication code (MAC).

2.2.7 Representation Of The Serialization Of The “Ciphertext” Representation Should Be As Compact As Possible

There is an inherent amount of overhead to storing the ciphertext representation. In particular, the IV and padding along can add significant overhead to small amounts of encrypted plaintext. However, experience has shown that there will be a significant amount of push-back from development teams when they discovered that a social security number or credit card number takes much more space to store when encrypted than the original plaintext. If this amount is excessive, developers sometimes resort to less secure encryption options such as ECB mode (which requires no IV), or CBC mode with fixed IV, and/or no padding.

See the encryption overhead table for ESAPI symmetric encryption for details.

2.2.8 Minimal Additional Processing Overhead In Interacting With This Encrypted Serialized Data

It is not hard to envision cases of where one may wish to encrypt or decrypt large amounts of data all at once. For example, imagine a scenario where a stand-alone batch job is run to read several million credit card records from a flat file and to encrypt the credit card number, as well as any other data deemed sensitive, before inserting these records into a secured database. In such a use case doing millions of encryptions, performance may be critical, especially if the batch job must be completed in a relatively short amount of time. In a case such as this, message authenticity is likely not a issue as it is known what process encrypts the data and inserts it into the database. Therefore, under such conditions, it is likely that a MAC to ensure message authenticity is not required and may be disabled to reduce the time required to handle the millions of encryptions and decryptions.
 

2.2.9 Java Implementation Of ESAPI Crypto Should Only Require The Standard Out-Of-The-Box JDK Install

ESASPI already has 30+ jars as dependencies, so there was a conscientious effort to not require the ESAPI reference Encryptor interface (JavaEncryptor) to require any additional ones. Also, while there are several alternate JCE implementations available, including some that are open source (e.g., Bouncy Castle and Cryptix) the extensions that they each provide (for example, in terms of supported ciphers or cipher modes) are non-standard. Furthermore, in many corporate settings, It is difficult to simply substitute whatever the company's acceptable JCE provider is without extensive scrutiny and evaluation. (This is particularly true if the company has a requirement to use a JCE implementation that is FIPS 140-2 compliant.) Because of these reasons, it seemed prudent to restrict ESAPI crypto to the functionality provided by Sun's reference JCE implementation provider, SunJCE. In other words, SunJCE was taken as the minimal subset of functionality in terms of cryptographic algorithms, cipher modes, padding schemes, etc. and the reference implementation of Encrytpor (i.e., JavaEncryptor) was written with that goal in mind. Had this not been the case, things would have been considerably simpler as we could have assumed that a “combined”
 cipher mode such as GCM or CCM which provides both confidentiality and message authenticity was available and required that instead of writing all the additional scaffold software to support the calculation of an explicit MAC.

2.2.10 Extensibility and Backward Compatibility

ESAPI is built around interfaces, but for each interface, a reference implementation is provided. For the Encryptor interface, the reference implementation is org.owasp.esapi.reference.crypto.JavaEncryptor. While this class is declared “final” for security reasons, it is possible to use delegation in order to reuse or extend some of its functionality.

Also, despite the fact that ESAPI's symmetric encryption had some serious issues (for details, see [1] Why is OWASP Changing ESAPI Encryption?), it was still deemed important by the OWASP community to make the transition to the new stronger encryption as painless as possible without sacrificing security. With this in mind, it was decided to support the older methods for symmetric encryption,


public String encrypt(String plaintext) throws EncryptionException

and


public String decrypt(String ciphertext)



throws EncryptionException

as deprecated methods. (For a few 2.0 release candidates, there was a LegacyJavaEncryptor class and some additional properties that was provided to support exact backward compatibility with ESAPI 1.4, but after extensive discussion on the ESAPI developers' mailing list, this was later dropped in the overriding interest of security.)

3 Important Design Details

3.1 Ensure Message Authenticity

Other than the weak default cipher mode that was used for ESAPI 1.4, the biggest drawback that I observed in the ESAPI 1.4 crypto was the complete lack of message authenticity. Without this, it might be possible for an adversary to intercept the ciphertext and submit a slightly altered version to somewhere to be decrypted. If the adversary can observe the result of the decryption attempt, they made be able to mount a side channel attack. If it is possible to get the attempted decryption of altered ciphertext to fail in two different ways, an adversary can use this as a decryption oracle. This was the case with the recently publicized padding oracle attacks against ASP.NET, Java Server Faces, and even earlier versions of ESAPI 2.0 release candidates. [3] [4]

Therefore, supporting message authenticity in ESAPI 2.0 crypto was considered paramount. To do this, one must make it impossible for an adversary to tamper with the ciphertext except for ways that can be detected.
 To provide this tamper-resistance, the standard cryptographic mechanisms of Message Authentication Code (MAC)
 or digital signatures would be used. In this case, because we are dealing with symmetric encryption, it is best to avoid digital signatures, if for no other reason than they are much slower than MACs (perhaps as much as 1000 times or so!). Besides, since we are already sharing a symmetric (i.e., secret) encryption key, we could simply derive a key from that already shared key. (See section 3.1.2 for details.)

3.1.1 Approaches to Applying a Message Authentication Code

Supporting authenticity via encrypt-then-MAC, which means encrypt first, then apply a MAC (specifically, HMAC-SHA1) to the IV+ciphertext. Other possible options were encrypt-and-MAC, which encrypts and then appends a MAC of the original plaintext, or MAC-then-encrypt, which appends a MAC to the plaintext and then encrypts everything. Of these options, only encrypt-then-MAC provides assurance of the integrity of ciphertexts and protection against certain adaptive chosen ciphertext attacks.
 However, the primary reason why the encrypt-then-MAC approach was chosen over the other two approaches was that it allows us to check the MAC for validity before even attempting decryption, so in this way, we are immune from things like padding oracle attacks. [3] [4]

3.1.2 Calculating a Shared Secret Key for the MAC

In order to properly implement an encrypt-then-MAC approach (or any other MAC approach for that matter), you really need two distinct secret keys. Providing a MAC key that is different for each unique encryption key is the best policy. However, it would be cumbersome to require that from the Encryptor interface. (It generally is considered poor practice to use the same secret key for the MAC and for encryption, even if the key sizes were the same.) So instead a “Key Derivation Function” (KDF) was used. The KDF is defined as the static method CryptoHelper.computeDerivedKey(). This KDF essentially operates as a repeated application of an HmacSHA1 until we've collected enough bits for the derived key. Note that if this method is ever changed, it can break backward compatibility. See details within this method itself for further explanation.

Finally, note that the encrypt-then-MAC approach is only used with cipher modes that do not already provide authenticity. If a cipher mode like GCM, CCM, EAX, etc. (see the ESAPI property, Encryptor.cipher_modes.combined_modes, for a complete list of those that are recognized by ESAPI), is being used, no key derivation is done and no MAC is calculated and added to the resulting CipherText object. (In such cases, the macLen is set to 0 in the encoded serialization of the CipherText object.)

3.1.3 Encoded Serialization of the CipherText

The encode serialization of ciphertext data is serialized in “network byte order” which is the same as big-endian order. All strings are written out as UTF-8 encoded byte arrays in network byte order and are prepended by a signed 2-octet length. Note that strings are not null terminated. The following table shows the memory layout. Field names that are shown in italics are considered optional.

Order
Size (in octets)
Field
Detailed Description

1
8
Version #
serialization version #; represented as int as YYYYMMDD.

2
8
timestamp
time encrypted, in milliseconds since midnight, Jan 1, 1970 UTC.

3
2
xformLen
strlen of cipherXform; always > 0.

4
xformLen
cipherXform
cipher transformation string, in form of cipherAlgorithm/cipherMode/paddingScheme; e.g., “AES/CBC/PKCS5Padding”.

5
2
keysize
key size of cipher, in bits.

6
2
blocksize
cipher block size, given in octets.

7
2
ivLen
IV length, in octets; 0 if no IV.

8
ivLen
IV
Initialization vector, if ivLen > 0; otherwise omitted.

9
4
ciphertextLen
length of raw cipher text, in octets.

10
ciphertextLen
rawCiphertext
raw cipher text (for ciphertextLen octets).

11
2
macLen
length of MAC, in octets; set to 0 if no MAC used.

12
macLen
MAC
Message Authentication Code (MAC) value if macLen > 0 (i.e., if MAC present); otherwise omitted.

Given a fully initialized CipherText object,, the method CipherText.asPortableSerializedByteArray() is used to produce the above encoded serialization in order to change it into a Java byte array. The static method CipherText.fromPortableSerializedBytes() is used to convert a byte array of a previously calculated encoded serialized CipherText object and convert it back into a usable CipherText object.

3.2 Compatibility with Legacy Code

Not every application that uses an initialization vector (IV) uses a random IV. In particular (but unfortunately), it is rather common for applications storing things like millions of credit card records or social security numbers, etc. to use an fixed IV so that the IV may be omitted from the stored raw ciphertext and save a bit of space. (This is especially frequent when developers or DBAs have insufficient time and/or motivation to reallocate DB table space.) Also, using a fixed IV may be required for compatibility with either legacy or third party software.

While compatibility with such edge cases was an important area for ESAPI to address, we did not want fixed IVs to be the default. Instead, the default is to use an randomly chosen IV for each attempt to encrypt plaintext. One problem with fixed IVs is that they can be susceptible to related-key attacks. (This is especially relevant of ciphers with smaller key sizes such as DES.) [6] [7]

Compatibility with ESAPI 1.4 was considered, but after putting it to a vote on both the ESAPI-Developers and ESAPI-Users list, it was eventually dropped. This decision was made for two primary reasons. First and foremost, there was lack of sufficient interest. Secondly, it was felt that supporting backward compatibility with ESAPI 1.4 would only cause poorly designed cryptography last longer. Therefore, after being put to a vote, support for backward compatibility with ESAPI 1.4 was dropped.

4 Road Map for Subsequent ESAPI JavaEE Releases

4.1 Planned for ESAPI 2.1

Depending on the duration of the ESAPI 2.1 release, some of these things may get moved out to the ESAPI 3.0 release.

· Get rid of JavaEncryptor as a singleton.  It was only done as a matter of convenience (mostly to simplify implementations of JavaEncryptor.sign() and JavaEncryptor.validateSignature()).

· Make it simpler to use different cipher algorithms or key sizes for symmetric encryption. This requires a major kludge today that is not at all thread safe without explicit locks. (It was so bad in fact, that the method to support this kludge was immediately deprecated!)

· Change sign() / validateSignature() so they can use persistent asymmetric keys and store public / private keys used with asymmetric crypto operations in a PKCS#12 or JKS key store.

· Create separate properties file for ESAPI crypto properties. Name it "ESAPI-Encryptor.properties" or something similar. (Google Issue #48.)

· Provide tamper-evident logging using cryptographic primitives as well as mechanism to verify that logs produced in such a manner have not been tampered with.

· Support for encrypting files.

4.2 Planned for ESAPI 3.0

Key management is just damned hard. It is the hardest problem in cryptography. But because it's hard, it's also where developers need the most help.

Currently ESAPI 2.0 does nothing to assist developers in managing their secret keys. Currently, in ESAPI 2.0, the default secret key is kept in the ESAPI.properties file and it must be placed there manually. Worse, any additional keys must be managed by the developer in code as the low-level interface to ESAPI crypto is SecretKey.

So there are plans to integrate ESAPI crypto with some to-be-determined FOSS key server. KeyCzar has been mentioned as a candidate, but that does little to offer key management mechanisms other than storage of multiple key versions. 
Another possibility would be StrongKey
 (http://www.strongkey.org/), which is the open source counterpart of the commercial StrongAuth product (http://www.strongauth.com/) or some other open source key management system at my day job, starting a new . Or given that I have already implemented a proprietary key management system perhaps a new OWASP sponsored project is not out of the question. Whatever is chosen, writing up a threat model should be mandatory.

5 References

[1]
ESAPI documentation, “Why is OWASP Changing ESAPI Encryption?”, <http://owasp-esapi-java.googlecode.com/svn/trunk/documentation/esapi4java-core-2.0-readme-crypto-changes.html

 HYPERLINK "http://owasp-esapi-java.googlecode.com/svn/trunk/documentation/esapi4java-core-2.0-readme-crypto-changes.html"
>
[2]
Schneier, Bruce, Applied Cryptography, 2nd Edition, John Wiley & Sons, 1996, ISBN 0-471-11709-9

[3] 
Thai Duong and Juliano Rizzo, “Padding Oracles Everywhere” (presented at ekoparty 2010), <http://netifera.com/research/poet//PaddingOraclesEverywhereEkoparty2010.pdf

 HYPERLINK "http://netifera.com/research/poet//PaddingOraclesEverywhereEkoparty2010.pdf"
>
[4] 
Thai Duong and Juliano Rizzo, “Practical Padding Oracle Attacks” (presented at Black Hat Europe 2010), <https://media.blackhat.com/bh-eu-10/whitepapers/Duong_Rizzo/BlackHat-EU-2010-Duong-Rizzo-Padding-Oracle-wp.pdf

 HYPERLINK "http://netifera.com/research/poet//PaddingOraclesEverywhereEkoparty2010.pdf"
>
[5]
M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message Authentication”, <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.8430

 HYPERLINK "http://netifera.com/research/poet//PaddingOraclesEverywhereEkoparty2010.pdf"
>
[6]
J. Loughran and T. Dowling, “A Java implemented key collision attack on the Data

 Encryption Standard (DES)”, Proceedings of the 2nd international conference on Principles and practice of programming in Java, 23 Nov. 2010 <http://homepage.eircom.net/~johnloughran/projects/computer/camDesAttackv4.pdf>

[7]
A. Bagherzandi1, M. Salmasizadeh, and J. Mohajeri, "A Related Key Attack on the Feistel Type Block Ciphers", International Journal of Network Security, Vol.8, No.3, PP.221–226, May 2009. 23 Nov. 2010 <http://ijns.femto.com.tw/contents/ijns-v8-n3/ijns-2009-v8-n3-p221-226.pdf >

�	That is, exhaustive search of the key space.


�	Specifically, these were JavaEE, .NET, classic ASP, PHP, ColdFusion/CFML, Python, Apex (SalesForce.com), and Ruby. JavaScript was added later, but it is questionable how useful cryptography would be when applied to a potentially insecure client.


�	Of course, doing this presumes that the database is secured so that some other process / person cannot insert bogus encrypted data into the database and then later be in a position to later observe whether or not the decryption succeeds. Otherwise, a padding oracle attack is still theoretically possible.


�	 ESAPI 2.x and later recognizes the following cipher modes as “combined” modes that support both confidentiality and message authenticity: GCM, CCM, IAPM, EAX, OCB, and CWC. However, this list may be modified by changing the property “Encryptor.cipher_modes.combined_modes” in the ESAPI.properties file. See comments in the ESAPI.properties file for further details.


�	More specifically, it must not be possible for an adversary to use the ESAPI 2.0 cryptosystem as an oracle.


�	A MAC is nothing more than a keyed secure one-way hash. Generally, we use HMAC-SHA1 or something stronger, like HMAC-SHA256, etc. for the MAC. An HMAC is a special construction of a MAC. Generally this construction follows that outlined in RFC 2104, which defines HMAC as


	HMAC(K,m) = H((K ⊕ opad) ∥ H((K ⊕ ipad) ∥ m))


	where K is the secret key, m is the message, opad is the one block long outer padding (0x5c5c5c...5c5c), and ipad is the one block long inner padding (0x363636...3636), where the block length is refers to the block length of the hash algorithm H. Here ⊕ denotes the XOR operation and ∥ denotes bitwise concatenation. Specifically note that the hash algorithm H (typically SHA1, SHA256, etc.) is used twice and combined in a very specific way. The interested reader is invited to read [5] for details.


�	The ASP.NET padding oracle vulnerability was because Microsoft used a MAC-then-encrypt approach, which forced them to decrypt prior to validating the MAC. In this specific case, when the decryption failed because of invalid padding, either an error message was returned or a different HTTP status code. And even if one were to employ the workaround of just returning something like the same 404 HTTP status, a timing attack can allow an adversary to exploit the vulnerability.


�	Note: There may be some patent issues here. I have attempted to contact Bruce Schneier and Johh Kelsey on November 22, 2010 regarding this and am currently awaiting response. Unless OWASP gets an “all clear” though, we will not proceed with this.


�	Technically, StrongKey is more than simply a key management system; it is an entire cryptosystem.





�Note: Spent about 30-40 min glancing through this and I am not impressed. See no indication immediate indication of enforcing dual control nor anything to prevent DBA from tampering with DB...both critical in my mind. Plus this is about 5 times or so the size of the one that we implemented at Qwest. Probably more bells and whistles, but complexity is really bad for this sort of thing. Also, no threat model is apparent, so this is not looking too promising. Also see no other design docs, use cases, etc.





14        Design Goals in OWASP ESAPI Cryptography  



                                                     Design Goals in OWASP ESAPI Cryptography  
14

