
OWASP ESAPI for Java Security Bulletin #5 The OWASP Foundation

How Does CVE-2021-29425 Impact ESAPI?
Kevin W. Wall <kevin.w.wall@gmail.com>

Summary

Category:

In Apache Commons IO before 2.7, When invoking the method
FileNameUtils.normalize with an improper input string, like "//../foo",
or "\\..\foo", the result would be the same value, thus possibly
providing access to files in the parent directory, but not further
above (thus "limited" path traversal), if the calling code would use
the result to construct a path value.

Module:
Apache Commons IO – a transitive dependency used by ESAPI via AntiSamy
to support general HTML sanitization. See the dependency tree below for
details.

Announced:
2020-05-08 via ESAPI User Google Group
(https://groups.google.com/a/owasp.org/g/esapi-project-users/c/VwxCAqT_i-
U)

Credits:
• GitHub Dependabot
• SnykBot

Affects:
All versions of ESAPI 2.x and all versions of ESAPI 1.x (no longer supported)
if you are using AntiSamy via ESAPI’s Validator.

Details:
Not exploitable as used by ESAPI or AntiSamy. See discussion
below.

GitHub
Issue #:

N/A

Related: None.

CWE:
CWE-22 (NIST: Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal'))
CWE-20 (Apache Software Foundation: Improper Input Validation)

CVE
Identifier:

CVE-2021-29425

CVSS
Severity
(version
3.1)

CVSS v3.1 Base Score: 5.3 (Medium)
 Impact Subscore: 1.4
 Exploitability Subscore: 3.9
CVSS Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Security Bulletin 5 Publication Date: May 8, 2021

mailto:kevin.w.wall@gmail.com
https://www.owasp.org/
https://groups.google.com/a/owasp.org/g/esapi-project-users/c/VwxCAqT_i-U
https://groups.google.com/a/owasp.org/g/esapi-project-users/c/VwxCAqT_i-U

Background
OWASP ESAPI (the OWASP Enterprise Security API) is a free, open source, web application
security control library that makes it easier for programmers to write lower-risk
applications. The ESAPI for Java library is designed to make it easier for programmers to
retrofit security into existing applications. ESAPI for Java also serves as a solid foundation
for new development.

Apache Commons IO is a FOSS library of utilities to assist with developing I/O functionality.
The class org.apache.commons.io.FileNameUtils is a class of static methods providing
several file name and file path manipulation utilities. The normalize() method provides file
path name cannonicalization.

The Apache Commons IO library is not a direct dependency of ESAPI. The way that it gets
pulled into ESAPI is via a transitive dependency. This is the portion of the dependency tree
from ESAPI 2.2.3.0 (the prior release) that shows how it gets pulled in:

kww@feynman:~/Code/GitHub/esapi-2.2.3.0-official$ mvn -B dependency:tree
[INFO] Scanning for projects...
[INFO]
[INFO] -----------------------< org.owasp.esapi:esapi >------------------------
[INFO] Building ESAPI 2.2.3.0
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] --- maven-dependency-plugin:3.1.2:tree (default-cli) @ esapi ---
[INFO] org.owasp.esapi:esapi:jar:2.2.3.0
[INFO] <... irrelevant dependencies deleted ...>
[INFO] +- org.owasp.antisamy:antisamy:jar:1.6.2:compile
[INFO] | +- net.sourceforge.nekohtml:nekohtml:jar:1.9.22:compile
[INFO] | +- org.apache.httpcomponents:httpclient:jar:4.5.13:compile
[INFO] | +- org.apache.httpcomponents:httpcore:jar:4.4.14:compile
[INFO] | +- org.apache.xmlgraphics:batik-css:jar:1.14:compile
[INFO] | | +- org.apache.xmlgraphics:batik-shared-resources:jar:1.14:compile
[INFO] | | +- org.apache.xmlgraphics:batik-util:jar:1.14:compile
[INFO] | | | +- org.apache.xmlgraphics:batik-constants:jar:1.14:compile
[INFO] | | | \- org.apache.xmlgraphics:batik-i18n:jar:1.14:compile
[INFO] | | \- org.apache.xmlgraphics:xmlgraphics-commons:jar:2.6:compile
[INFO] | | \- commons-io:commons-io:jar:1.3.1:compile
... deleted ...

So Commons IO is being pulled in via AntiSamy, which pulls in Apache Batik-CSS.
Batik-CSS is part of a larger Apache Xmlgraphics Batik family which is mirrored on
GitHub at https://github.com/apache/xmlgraphics-batik.

While it may be obvious, we will also note that AntiSamy also does NOT directly use
Apache Commons IO.

Security Bulletin 5 Publication Date: May 8, 2021

https://github.com/apache/xmlgraphics-batik
http://commons.apache.org/proper/commons-io/apidocs/org/apache/commons/io/FilenameUtils.html
https://owasp.org/www-project-enterprise-security-api/

Problem Description
According to the description in NIST’s National Vulnerability Database (NVD), the current
description for CVE-2021-29425 states:

“In Apache Commons IO before 2.7, When invoking the method
FileNameUtils.normalize with an improper input string, like "//../foo", or "\\..\
foo", the result would be the same value, thus possibly providing access to
files in the parent directory, but not further above (thus "limited" path
traversal), if the calling code would use the result to construct a path value.”

So the real question that everyone is asking is will using ESAPI leave my application code
exposed to CVE-2021-29425 n a manner that makes this CVE exploitable? That is the
question this analysis attempts to answer, but the TL;DR answer for those of you not
interested in the details is,

“No, it does not, because nothing in the Batik family of libraries uses
org.apache.commons.io.FileNameUtils and thus is not affected by this CVE.”

Specifically, I cloned https://github.com/apache/xmlgraphics-batik and searched the
source code for the use of Apache Commons IO and the only reference to any class was to
org.apache.commons.io.IOUtils and even then it was only using the static ‘copy()’ method
to copy files. And the copy method only uses code from the JRE (e.g., rt.jar classes and
maybe some other implementation specific classes), but no Apache Commons IO classes.

Therefore there is no path that would allow the vulnerable FileNameUtils.normalize()
method to be invoked via ESAPI or AntiSamy or even Batik-CSS for that matter. (Obviously
any insecure reflection vulnerability or insecure deserialization vulnerability in your
applications execution path would allow it to be called, but if that’s the case you have
much bigger problems than a limited path traversal attack, so end of discussion on that.)

Impact
So, if ESAPI does not expose an exploitable path to CVE-2021-29425, what then is the
concern? The problem as we see it, and likely how many in the ESAPI users community
view it, is that Software Composition Analysis (SCA) tools and/or services like OWASP
Dependency Check, BlackDuck, Snyk, Veracode's SourceClear, GitHub, etc. will continue to
give you warnings that you may be required to explain to your management in order to
justify continue using ESAPI in your application.

Upgrading to Commons IO 2.8.0 to completely remediate this potential vulnerability from
ESAPI would require that ESAPI be updated to require all ESAPI clients be using at least
Java 8. Currently the minimal JRE baseline for ESAPI is Java 7. Changing this without

Security Bulletin 5 Publication Date: May 8, 2021

https://github.com/apache/xmlgraphics-batik
https://nvd.nist.gov/vuln/detail/CVE-2021-29425

warning would be in conflict with ESAPI’s deprecation policy, which is now officially
described in ESAPI’s README.md file, but which has long been our unofficial policy dating
back to ESAPI 2.0.0.0. If you use ESAPI with Java 8 or later, you are encouraged to the
workaround which is described in the next section.

If as an ESAPI user, you absolutely must continue to use ESAPI’s with Java 7, they you will
just have to accept the risk. But things like this are only going to get worse and ESAPI will
soon be requiring Java 8 as a minimal JRE baseline. You can also show your management
this security bulletin if you think that will help.

Workaround
If your application is using Java 8 or later, you can use this workaround and it should make
any SCA scans stop complaining about CVE-2021-29425. If you application is using Java 7,
you probably have bigger problems than worrying about noise in your SCA scans.

The specific example for this workaround assumes your application is using Maven, but
most other modern build tools allow you to do similar things.

For Maven projects, edit your application’s pom.xml, and update your reference of your
application’s dependency on the ESAPI jar in this manner:

 <dependency>
 <groupId>org.owasp.esapi</groupId>
 <artifactId>esapi</artifactId>
 <version>2.2.3.1</version> <!-- Or whatever version you are using. -->
 <exclusions>
 <exclusion>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <!-- Add commons-io 2.8.0 (or later) as an explicit dependency to
 work around CVE-2021-29425.
 -->
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <!-- Note: commons-io:2.7 and later requires Java 8 -->
 <version>2.8.0</version>
 </dependency>

Security Bulletin 5 Publication Date: May 8, 2021

https://github.com/ESAPI/esapi-java-legacy/blob/develop/README.md

The lines highlighted in yellow are lines you will add.

When you then build your project, this should exclude the vulnerable version of
commons-io jar that ESAPI would normally pull in and replace it with the one you specified
in your updated pom.xml file. (Of course, this is assuming you don’t have the commons-io
jar elsewhere as a direct or transitive dependency) Note that you do not have to specify a
‘version’ when you “exclude” it.

You can also exclude specific transitive dependencies using Gradle. If you use Grade,
follow these general instructions. For other build tools, you’re on your own.

Additional Precautions

Run OWASP Dependency Check or a similar SCA tool or service on your final project
configuration after configuring the workaround to ensure that CVE-2021-29425 no longer
shows up as a vulnerability in your application’s class path.

Solution
The only “real” solution to this is to have OWASP ESAPI update to require Java 8 as a
minimal JRE baseline. That is planned later on in the year, but we can not do so without
sufficient advance warning. Stay tuned to the ESAPI-Dev and ESAPI-Users Google groups
mailing lists.

If you decide to live with the SCA scanner warnings, perhaps you can show your
management this ESAPI security bulletin to convince them that using ESAPI does not make
CVE-2020-9488 exploitable to your application because of the restricted way that ESAPI
uses Apache Commons IO classes.

References
https://nvd.nist.gov/vuln/detail/CVE-2021-29425

Security Bulletin 5 Publication Date: May 8, 2021

https://nvd.nist.gov/vuln/detail/CVE-2021-29425
https://discuss.gradle.org/t/how-do-i-exclude-specific-transitive-dependencies-of-something-i-depend-on/17991

	Summary
	Background
	Problem Description
	Impact
	Workaround
	Additional Precautions

	Solution
	References

