1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
/*--------------------------------*-C-*---------------------------------*
* File:
* fftn.c
*
* multivariate complex Fourier transform, computed in place
* using mixed-radix Fast Fourier Transform algorithm.
*
* Fortran code by:
* RC Singleton, Stanford Research Institute, Sept. 1968
* NIST Guide to Available Math Software.
* Source for module FFT from package GO.
* Retrieved from NETLIB on Wed Jul 5 11:50:07 1995.
* translated by f2c (version 19950721) and with lots of cleanup
* to make it resemble C by:
* MJ Olesen, Queen's University at Kingston, 1995-97
*/
/*{{{ Copyright: */
/*
* Copyright(c)1995,97 Mark Olesen <olesen@me.QueensU.CA>
* Queen's Univ at Kingston (Canada)
*
* Permission to use, copy, modify, and distribute this software for
* any purpose without fee is hereby granted, provided that this
* entire notice is included in all copies of any software which is
* or includes a copy or modification of this software and in all
* copies of the supporting documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR QUEEN'S
* UNIVERSITY AT KINGSTON MAKES ANY REPRESENTATION OR WARRANTY OF ANY
* KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS
* FITNESS FOR ANY PARTICULAR PURPOSE.
*
* All of which is to say that you can do what you like with this
* source code provided you don't try to sell it as your own and you
* include an unaltered copy of this message (including the
* copyright).
*
* It is also implicitly understood that bug fixes and improvements
* should make their way back to the general Internet community so
* that everyone benefits.
*----------------------------------------------------------------------*/
/*}}}*/
/*{{{ notes: */
/*
* Public:
* fft_free
* fftn / fftnf
* (these are documented in the header file)
*
* Private:
* fftradix / fftradixf
*
* ----------------------------------------------------------------------*
* int fftradix (REAL Re[], REAL Im[], unsigned int nTotal, unsigned int nPass,
* unsigned int nSpan, int iSign, unsigned int maxFactors,
* unsigned int maxPerm);
*
* RE and IM hold the real and imaginary components of the data, and
* return the resulting real and imaginary Fourier coefficients.
* Multidimensional data *must* be allocated contiguously. There is
* no limit on the number of dimensions.
*
*
* Although there is no limit on the number of dimensions, fftradix()
* must be called once for each dimension, but the calls may be in
* any order.
*
* NTOTAL = the total number of complex data values
* NPASS = the dimension of the current variable
* NSPAN/NPASS = the spacing of consecutive data values while indexing
* the current variable
* ISIGN - see above documentation
*
* example:
* tri-variate transform with Re[n1][n2][n3], Im[n1][n2][n3]
*
* fftradix (Re, Im, n1*n2*n3, n1, n1, 1, maxf, maxp);
* fftradix (Re, Im, n1*n2*n3, n2, n1*n2, 1, maxf, maxp);
* fftradix (Re, Im, n1*n2*n3, n3, n1*n2*n3, 1, maxf, maxp);
*
* single-variate transform,
* NTOTAL = N = NSPAN = (number of complex data values),
*
* fftradix (Re, Im, n, n, n, 1, maxf, maxp);
*
* The data can also be stored in a single array with alternating
* real and imaginary parts, the magnitude of ISIGN is changed to 2
* to give correct indexing increment, and data [0] and data [1] used
* to pass the initial addresses for the sequences of real and
* imaginary values,
*
* example:
* REAL data [2*NTOTAL];
* fftradix (&data[0], &data[1], NTOTAL, nPass, nSpan, 2, maxf, maxp);
*
* for temporary allocation:
*
* MAXFACTORS >= the maximum prime factor of NPASS
* MAXPERM >= the number of prime factors of NPASS. In addition,
* if the square-free portion K of NPASS has two or more prime
* factors, then MAXPERM >= (K-1)
*
* storage in FACTOR for a maximum of 15 prime factors of NPASS. if
* NPASS has more than one square-free factor, the product of the
* square-free factors must be <= 210 array storage for maximum prime
* factor of 23 the following two constants should agree with the
* array dimensions.
* ----------------------------------------------------------------------*/
/*}}}*/
/*{{{ Revisions: */
/*
* 26 July 95 John Beale
* - added maxf and maxp as parameters to fftradix()
*
* 28 July 95 Mark Olesen <olesen@me.QueensU.CA>
* - cleaned-up the Fortran 66 goto spaghetti, only 3 labels remain.
*
* - added fft_free() to provide some measure of control over
* allocation/deallocation.
*
* - added fftn() wrapper for multidimensional FFTs
*
* - use -DFFT_NOFLOAT or -DFFT_NODOUBLE to avoid compiling that
* precision. Note suffix `f' on the function names indicates
* float precision.
*
* - revised documentation
*
* 31 July 95 Mark Olesen <olesen@me.QueensU.CA>
* - added GNU Public License
* - more cleanup
* - define SUN_BROKEN_REALLOC to use malloc() instead of realloc()
* on the first pass through, apparently needed for old libc
* - removed #error directive in favour of some code that simply
* won't compile (generate an error that way)
*
* 1 Aug 95 Mark Olesen <olesen@me.QueensU.CA>
* - define FFT_RADIX4 to only have radix 2, radix 4 transforms
* - made fftradix /fftradixf () static scope, just use fftn()
* instead. If you have good ideas about fixing the factors
* in fftn() please do so.
*
* 8 Jan 95 mj olesen <olesen@me.QueensU.CA>
* - fixed typo's, including one that broke scaling for scaling by
* total number of matrix elements or the square root of same
* - removed unnecessary casts from allocations
*
* 10 Dec 96 mj olesen <olesen@me.QueensU.CA>
* - changes defines to compile *without* float support by default,
* use -DFFT_FLOAT to enable.
* - shifted some variables to local scope (better hints for optimizer)
* - added Michael Steffens <Michael.Steffens@mbox.muk.uni-hannover.de>
* Fortran 90 module
* - made it simpler to pass dimensions for 1D FFT.
*
* 23 Feb 97 Mark Olesen <olesen@me.QueensU.CA>
* - removed the GNU Public License (see 21 July 1995 entry),
* which should make it clear why I have the right to do so.
* - Added copyright notice and submitted to netlib
* - Moved documentation for the public functions to the header
* files where is will always be available.
* ----------------------------------------------------------------------*/
/*}}}*/
#ifndef _FFTN_C
#define _FFTN_C
/* we use CPP to re-include this same file for double/float cases */
//#if !defined (lint) && !defined (__FILE__)
//Error: your compiler is sick! define __FILE__ yourself (a string)
//eg, something like -D__FILE__=\"fftn.c\"
//#endif
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "fftn.h"
/*{{{ defines/constants */
#ifndef M_PI
# define M_PI 3.14159265358979323846264338327950288
#endif
#ifndef SIN60
# define SIN60 0.86602540378443865 /* sin(60 deg) */
# define COS72 0.30901699437494742 /* cos(72 deg) */
# define SIN72 0.95105651629515357 /* sin(72 deg) */
#endif
/*}}}*/
/*{{{ static parameters - for memory management */
static size_t SpaceAlloced = 0;
static size_t MaxPermAlloced = 0;
/* temp space, (void *) since both float and double routines use it */
static void * Tmp0 = NULL; /* temp space for real part */
static void * Tmp1 = NULL; /* temp space for imaginary part */
static void * Tmp2 = NULL; /* temp space for Cosine values */
static void * Tmp3 = NULL; /* temp space for Sine values */
static int * Perm = NULL; /* Permutation vector */
#define NFACTOR 11
static int factor [NFACTOR];
/*}}}*/
/*{{{ fft_free() */
void
fft_free (void)
{
SpaceAlloced = MaxPermAlloced = 0;
if (Tmp0) { free (Tmp0); Tmp0 = NULL; }
if (Tmp1) { free (Tmp1); Tmp1 = NULL; }
if (Tmp2) { free (Tmp2); Tmp2 = NULL; }
if (Tmp3) { free (Tmp3); Tmp3 = NULL; }
if (Perm) { free (Perm); Perm = NULL; }
}
/*}}}*/
/* return the number of factors */
static int
factorize (unsigned int nPass, int * kt)
{
int nFactor = 0;
int j;
unsigned int jj;
*kt = 0;
/* determine the factors of n */
while ((nPass % 16) == 0) /* factors of 4 */
{
factor [nFactor++] = 4;
nPass /= 16;
}
j = 3; jj = 9; /* factors of 3, 5, 7, ... */
do {
while ((nPass % jj) == 0)
{
factor [nFactor++] = j;
nPass /= jj;
}
j += 2;
jj = j * j;
} while (jj <= nPass);
if (nPass <= 4)
{
*kt = nFactor;
factor [nFactor] = nPass;
if (nPass != 1)
nFactor++;
}
else
{
if (nPass - (nPass / 4 << 2) == 0)
{
factor [nFactor++] = 2;
nPass /= 4;
}
*kt = nFactor;
j = 2;
do {
if ((nPass % j) == 0)
{
factor [nFactor++] = j;
nPass /= j;
}
j = ((j + 1) / 2 << 1) + 1;
} while (j <= nPass);
}
if (*kt)
{
j = *kt;
do
factor [nFactor++] = factor [--j];
while (j);
}
return nFactor;
}
/* re-include this source file on the second pass through */
/*{{{ defines for re-including double precision */
#ifdef FFT_NODOUBLE
# ifndef FFT_FLOAT
# define FFT_FLOAT
# endif
#else
# undef REAL
# undef FFTN
# undef FFTNS
# undef FFTRADIX
# undef FFTRADIXS
/* defines for double */
# define REAL double
# define FFTN fftn
# define FFTNS "fftn"
# define FFTRADIX fftradix
# define FFTRADIXS "fftradix"
/* double precision routine */
static int
fftradix (double Re[], double Im[],
unsigned int nTotal, unsigned int nPass, unsigned int nSpan, int isign,
unsigned int maxFactors, unsigned int maxPerm);
# include __FILE__ /* include this file again */
#endif
/*}}}*/
/*{{{ defines for re-including float precision */
#ifdef FFT_FLOAT
# undef REAL
# undef FFTN
# undef FFTNS
# undef FFTRADIX
# undef FFTRADIXS
/* defines for float */
# define REAL float
# define FFTN fftnf /* trailing 'f' for float */
# define FFTNS "fftnf" /* name for error message */
# define FFTRADIX fftradixf /* trailing 'f' for float */
# define FFTRADIXS "fftradixf" /* name for error message */
/* float precision routine */
static int
fftradixf (float Re[], float Im[],
unsigned int nTotal, unsigned int nPass, unsigned int nSpan, int isign,
unsigned int maxFactors, unsigned int maxPerm);
# include __FILE__ /* include this file again */
#endif
/*}}}*/
#else /* _FFTN_C */
/*
* use macros to access the Real/Imaginary parts so that it's possible
* to substitute different macros if a complex struct is used
*/
#ifndef Re_Data
# define Re_Data(i) Re[i]
# define Im_Data(i) Im[i]
#endif
/*
*
*/
int
FFTN (int ndim,
const unsigned int dims [],
REAL Re [],
REAL Im [],
int iSign,
double scaling)
{
unsigned int nTotal;
unsigned int maxFactors, maxPerm;
/*
* tally the number of elements in the data array
* and determine the number of dimensions
*/
nTotal = 1;
if (ndim)
{
if (dims != NULL)
{
int i;
/* number of dimensions was specified */
for (i = 0; i < ndim; i++)
{
if (dims [i] <= 0) goto Dimension_Error;
nTotal *= dims [i];
}
}
else
nTotal *= ndim;
}
else
{
int i;
/* determine # of dimensions from zero-terminated list */
if (dims == NULL) goto Dimension_Error;
for (ndim = i = 0; dims [i]; i++)
{
if (dims [i] <= 0)
goto Dimension_Error;
nTotal *= dims [i];
ndim++;
}
}
/* determine maximum number of factors and permuations */
#if 1
/*
* follow John Beale's example, just use the largest dimension and don't
* worry about excess allocation. May be someone else will do it?
*/
if (dims != NULL)
{
int i;
for (maxFactors = maxPerm = 1, i = 0; i < ndim; i++)
{
if (dims [i] > maxFactors) maxFactors = dims [i];
if (dims [i] > maxPerm) maxPerm = dims [i];
}
}
else
{
maxFactors = maxPerm = nTotal;
}
#else
/* use the constants used in the original Fortran code */
maxFactors = 23;
maxPerm = 209;
#endif
/* loop over the dimensions: */
if (dims != NULL)
{
unsigned int nSpan = 1;
int i;
for (i = 0; i < ndim; i++)
{
int ret;
nSpan *= dims [i];
ret = FFTRADIX (Re, Im, nTotal, dims [i], nSpan, iSign,
maxFactors, maxPerm);
/* exit, clean-up already done */
if (ret)
return ret;
}
}
else
{
int ret;
ret = FFTRADIX (Re, Im, nTotal, nTotal, nTotal, iSign,
maxFactors, maxPerm);
/* exit, clean-up already done */
if (ret)
return ret;
}
/* Divide through by the normalizing constant: */
if (scaling && scaling != 1.0)
{
size_t ist;
if (iSign < 0) iSign = -iSign;
if (scaling < 0.0)
scaling = (scaling < -1.0) ? sqrt (nTotal) : nTotal;
scaling = 1.0 / scaling; /* multiply is often faster */
for (ist = 0; ist < nTotal; ist += iSign)
{
Re_Data (ist) *= scaling;
Im_Data (ist) *= scaling;
}
}
return 0;
Dimension_Error:
fprintf (stderr, "Error: " FFTNS "() - dimension error\n");
fft_free (); /* free-up memory */
return -1;
}
/*----------------------------------------------------------------------*/
/*
* singleton's mixed radix routine
*
* could move allocation out to fftn(), but leave it here so that it's
* possible to make this a standalone function
*/
static int
FFTRADIX (REAL Re [],
REAL Im [],
unsigned int nTotal,
unsigned int nPass,
unsigned int nSpan,
int iSign,
unsigned int maxFactors,
unsigned int maxPerm)
{
int ii, nFactor, kspan, ispan, inc;
int j, jc, jf, jj, k, k1, k3, kk, kt, nn, ns, nt;
REAL radf;
REAL c1, c2, c3, cd;
REAL s1, s2, s3, sd;
REAL * Rtmp = NULL; /* temp space for real part*/
REAL * Itmp = NULL; /* temp space for imaginary part */
REAL * Cos = NULL; /* Cosine values */
REAL * Sin = NULL; /* Sine values */
#ifndef FFT_RADIX4
REAL s60 = SIN60; /* sin(60 deg) */
REAL s72 = SIN72; /* sin(72 deg) */
REAL c72 = COS72; /* cos(72 deg) */
#endif
REAL pi2 = M_PI; /* use PI first, 2 PI later */
/* gcc complains about k3 being uninitialized, but I can't find out where
* or why ... it looks okay to me.
*
* initialize to make gcc happy
*/
k3 = 0;
/* gcc complains about c2, c3, s2,s3 being uninitialized, but they're
* only used for the radix 4 case and only AFTER the (s1 == 0.0) pass
* through the loop at which point they will have been calculated.
*
* initialize to make gcc happy
*/
c2 = c3 = s2 = s3 = 0.0;
/* Parameter adjustments, was fortran so fix zero-offset */
Re--;
Im--;
if (nPass < 2)
return 0;
/* allocate storage */
if (SpaceAlloced < maxFactors * sizeof (REAL))
{
#ifdef SUN_BROKEN_REALLOC
if (!SpaceAlloced) /* first time */
{
SpaceAlloced = maxFactors * sizeof (REAL);
Tmp0 = malloc (SpaceAlloced);
Tmp1 = malloc (SpaceAlloced);
Tmp2 = malloc (SpaceAlloced);
Tmp3 = malloc (SpaceAlloced);
}
else
{
#endif
SpaceAlloced = maxFactors * sizeof (REAL);
Tmp0 = realloc (Tmp0, SpaceAlloced);
Tmp1 = realloc (Tmp1, SpaceAlloced);
Tmp2 = realloc (Tmp2, SpaceAlloced);
Tmp3 = realloc (Tmp3, SpaceAlloced);
#ifdef SUN_BROKEN_REALLOC
}
#endif
}
else
{
/* allow full use of alloc'd space */
maxFactors = SpaceAlloced / sizeof (REAL);
}
if (MaxPermAlloced < (size_t)maxPerm)
{
#ifdef SUN_BROKEN_REALLOC
if (!MaxPermAlloced) /* first time */
Perm = malloc (maxPerm * sizeof(int));
else
#endif
Perm = realloc (Perm, maxPerm * sizeof(int));
MaxPermAlloced = maxPerm;
}
else
{
/* allow full use of alloc'd space */
maxPerm = MaxPermAlloced;
}
if (!Tmp0 || !Tmp1 || !Tmp2 || !Tmp3 || !Perm) goto Memory_Error;
/* assign pointers */
Rtmp = (REAL *) Tmp0;
Itmp = (REAL *) Tmp1;
Cos = (REAL *) Tmp2;
Sin = (REAL *) Tmp3;
/*
* Function Body
*/
inc = iSign;
if (iSign < 0)
{
#ifndef FFT_RADIX4
s60 = -s60;
s72 = -s72;
#endif
pi2 = -pi2;
inc = -inc; /* absolute value */
}
/* adjust for strange increments */
nt = inc * nTotal;
ns = inc * nSpan;
kspan = ns;
nn = nt - inc;
jc = ns / nPass;
radf = pi2 * (double) jc;
pi2 *= 2.0; /* use 2 PI from here on */
ii = 0;
jf = 0;
/* determine the factors of n */
nFactor = factorize (nPass, &kt);
/* test that nFactors is in range */
if (nFactor > NFACTOR)
{
fprintf (stderr, "Error: " FFTRADIXS "() - exceeded number of factors\n");
goto Memory_Error;
}
/* compute fourier transform */
for (;;) {
sd = radf / (double) kspan;
cd = sin (sd);
cd = 2.0 * cd * cd;
sd = sin (sd + sd);
kk = 1;
ii++;
switch (factor [ii - 1]) {
case 2:
/* transform for factor of 2 (including rotation factor) */
kspan /= 2;
k1 = kspan + 2;
do {
do {
REAL tmpr;
REAL tmpi;
int k2;
k2 = kk + kspan;
tmpr = Re_Data (k2);
tmpi = Im_Data (k2);
Re_Data (k2) = Re_Data (kk) - tmpr;
Im_Data (k2) = Im_Data (kk) - tmpi;
Re_Data (kk) += tmpr;
Im_Data (kk) += tmpi;
kk = k2 + kspan;
} while (kk <= nn);
kk -= nn;
} while (kk <= jc);
if (kk > kspan)
goto Permute_Results; /* exit infinite loop */
do {
int k2;
c1 = 1.0 - cd;
s1 = sd;
do {
REAL tmp;
do {
do {
REAL tmpr;
REAL tmpi;
k2 = kk + kspan;
tmpr = Re_Data (kk) - Re_Data (k2);
tmpi = Im_Data (kk) - Im_Data (k2);
Re_Data (kk) += Re_Data (k2);
Im_Data (kk) += Im_Data (k2);
Re_Data (k2) = c1 * tmpr - s1 * tmpi;
Im_Data (k2) = s1 * tmpr + c1 * tmpi;
kk = k2 + kspan;
} while (kk < nt);
k2 = kk - nt;
c1 = -c1;
kk = k1 - k2;
} while (kk > k2);
tmp = c1 - (cd * c1 + sd * s1);
s1 = sd * c1 - cd * s1 + s1;
c1 = 2.0 - (tmp * tmp + s1 * s1);
s1 *= c1;
c1 *= tmp;
kk += jc;
} while (kk < k2);
k1 += (inc + inc);
kk = (k1 - kspan) / 2 + jc;
} while (kk <= jc + jc);
break;
case 4: /* transform for factor of 4 */
ispan = kspan;
kspan /= 4;
do {
c1 = 1.0;
s1 = 0.0;
do {
do {
REAL ajm, ajp, akm, akp;
REAL bjm, bjp, bkm, bkp;
int k2;
k1 = kk + kspan;
k2 = k1 + kspan;
k3 = k2 + kspan;
akp = Re_Data (kk) + Re_Data (k2);
akm = Re_Data (kk) - Re_Data (k2);
ajp = Re_Data (k1) + Re_Data (k3);
ajm = Re_Data (k1) - Re_Data (k3);
bkp = Im_Data (kk) + Im_Data (k2);
bkm = Im_Data (kk) - Im_Data (k2);
bjp = Im_Data (k1) + Im_Data (k3);
bjm = Im_Data (k1) - Im_Data (k3);
Re_Data (kk) = akp + ajp;
Im_Data (kk) = bkp + bjp;
ajp = akp - ajp;
bjp = bkp - bjp;
if (iSign < 0)
{
akp = akm + bjm;
bkp = bkm - ajm;
akm -= bjm;
bkm += ajm;
}
else
{
akp = akm - bjm;
bkp = bkm + ajm;
akm += bjm;
bkm -= ajm;
}
/* avoid useless multiplies */
if (s1 == 0.0)
{
Re_Data (k1) = akp;
Re_Data (k2) = ajp;
Re_Data (k3) = akm;
Im_Data (k1) = bkp;
Im_Data (k2) = bjp;
Im_Data (k3) = bkm;
}
else
{
Re_Data (k1) = akp * c1 - bkp * s1;
Re_Data (k2) = ajp * c2 - bjp * s2;
Re_Data (k3) = akm * c3 - bkm * s3;
Im_Data (k1) = akp * s1 + bkp * c1;
Im_Data (k2) = ajp * s2 + bjp * c2;
Im_Data (k3) = akm * s3 + bkm * c3;
}
kk = k3 + kspan;
} while (kk <= nt);
c2 = c1 - (cd * c1 + sd * s1);
s1 = sd * c1 - cd * s1 + s1;
c1 = 2.0 - (c2 * c2 + s1 * s1);
s1 *= c1;
c1 *= c2;
/* values of c2, c3, s2, s3 that will get used next time */
c2 = c1 * c1 - s1 * s1;
s2 = 2.0 * c1 * s1;
c3 = c2 * c1 - s2 * s1;
s3 = c2 * s1 + s2 * c1;
kk = kk - nt + jc;
} while (kk <= kspan);
kk = kk - kspan + inc;
} while (kk <= jc);
if (kspan == jc)
goto Permute_Results; /* exit infinite loop */
break;
default:
/* transform for odd factors */
#ifdef FFT_RADIX4
fprintf (stderr, "Error: " FFTRADIXS "(): compiled for radix 2/4 only\n");
fft_free (); /* free-up memory */
return -1;
break;
#else /* FFT_RADIX4 */
ispan = kspan;
k = factor [ii - 1];
kspan /= factor [ii - 1];
switch (factor [ii - 1]) {
case 3: /* transform for factor of 3 (optional code) */
do {
do {
REAL aj, tmpr;
REAL bj, tmpi;
int k2;
k1 = kk + kspan;
k2 = k1 + kspan;
tmpr = Re_Data (kk);
tmpi = Im_Data (kk);
aj = Re_Data (k1) + Re_Data (k2);
bj = Im_Data (k1) + Im_Data (k2);
Re_Data (kk) = tmpr + aj;
Im_Data (kk) = tmpi + bj;
tmpr -= 0.5 * aj;
tmpi -= 0.5 * bj;
aj = (Re_Data (k1) - Re_Data (k2)) * s60;
bj = (Im_Data (k1) - Im_Data (k2)) * s60;
Re_Data (k1) = tmpr - bj;
Re_Data (k2) = tmpr + bj;
Im_Data (k1) = tmpi + aj;
Im_Data (k2) = tmpi - aj;
kk = k2 + kspan;
} while (kk < nn);
kk -= nn;
} while (kk <= kspan);
break;
case 5: /* transform for factor of 5 (optional code) */
c2 = c72 * c72 - s72 * s72;
s2 = 2.0 * c72 * s72;
do {
do {
REAL aa, aj, ak, ajm, ajp, akm, akp;
REAL bb, bj, bk, bjm, bjp, bkm, bkp;
int k2, k4;
k1 = kk + kspan;
k2 = k1 + kspan;
k3 = k2 + kspan;
k4 = k3 + kspan;
akp = Re_Data (k1) + Re_Data (k4);
akm = Re_Data (k1) - Re_Data (k4);
bkp = Im_Data (k1) + Im_Data (k4);
bkm = Im_Data (k1) - Im_Data (k4);
ajp = Re_Data (k2) + Re_Data (k3);
ajm = Re_Data (k2) - Re_Data (k3);
bjp = Im_Data (k2) + Im_Data (k3);
bjm = Im_Data (k2) - Im_Data (k3);
aa = Re_Data (kk);
bb = Im_Data (kk);
Re_Data (kk) = aa + akp + ajp;
Im_Data (kk) = bb + bkp + bjp;
ak = akp * c72 + ajp * c2 + aa;
bk = bkp * c72 + bjp * c2 + bb;
aj = akm * s72 + ajm * s2;
bj = bkm * s72 + bjm * s2;
Re_Data (k1) = ak - bj;
Re_Data (k4) = ak + bj;
Im_Data (k1) = bk + aj;
Im_Data (k4) = bk - aj;
ak = akp * c2 + ajp * c72 + aa;
bk = bkp * c2 + bjp * c72 + bb;
aj = akm * s2 - ajm * s72;
bj = bkm * s2 - bjm * s72;
Re_Data (k2) = ak - bj;
Re_Data (k3) = ak + bj;
Im_Data (k2) = bk + aj;
Im_Data (k3) = bk - aj;
kk = k4 + kspan;
} while (kk < nn);
kk -= nn;
} while (kk <= kspan);
break;
default:
k = factor [ii - 1];
if (jf != k)
{
jf = k;
s1 = pi2 / (double) jf;
c1 = cos (s1);
s1 = sin (s1);
if (jf > maxFactors)
goto Memory_Error;
Cos [jf - 1] = 1.0;
Sin [jf - 1] = 0.0;
j = 1;
do {
Cos [j - 1] = Cos [k - 1] * c1 + Sin [k - 1] * s1;
Sin [j - 1] = Cos [k - 1] * s1 - Sin [k - 1] * c1;
k--;
Cos [k - 1] = Cos [j - 1];
Sin [k - 1] = -Sin [j - 1];
j++;
} while (j < k);
}
do {
do {
REAL aa, ak;
REAL bb, bk;
int k2;
aa = ak = Re_Data (kk);
bb = bk = Im_Data (kk);
k1 = kk;
k2 = kk + ispan;
j = 1;
k1 += kspan;
do {
k2 -= kspan;
Rtmp [j] = Re_Data (k1) + Re_Data (k2);
ak += Rtmp [j];
Itmp [j] = Im_Data (k1) + Im_Data (k2);
bk += Itmp [j];
j++;
Rtmp [j] = Re_Data (k1) - Re_Data (k2);
Itmp [j] = Im_Data (k1) - Im_Data (k2);
j++;
k1 += kspan;
} while (k1 < k2);
Re_Data (kk) = ak;
Im_Data (kk) = bk;
k1 = kk;
k2 = kk + ispan;
j = 1;
do {
REAL aj = 0.0;
REAL bj = 0.0;
k1 += kspan;
k2 -= kspan;
jj = j;
ak = aa;
bk = bb;
k = 1;
do {
ak += Rtmp [k] * Cos [jj - 1];
bk += Itmp [k] * Cos [jj - 1];
k++;
aj += Rtmp [k] * Sin [jj - 1];
bj += Itmp [k] * Sin [jj - 1];
k++;
jj += j;
if (jj > jf)
jj -= jf;
} while (k < jf);
k = jf - j;
Re_Data (k1) = ak - bj;
Im_Data (k1) = bk + aj;
Re_Data (k2) = ak + bj;
Im_Data (k2) = bk - aj;
j++;
} while (j < k);
kk += ispan;
} while (kk <= nn);
kk -= nn;
} while (kk <= kspan);
break;
}
/* multiply by rotation factor (except for factors of 2 and 4) */
if (ii == nFactor)
goto Permute_Results; /* exit infinite loop */
kk = jc + 1;
do {
c2 = 1.0 - cd;
s1 = sd;
do {
c1 = c2;
s2 = s1;
kk += kspan;
do {
REAL tmp;
do {
REAL ak;
ak = Re_Data (kk);
Re_Data (kk) = c2 * ak - s2 * Im_Data (kk);
Im_Data (kk) = s2 * ak + c2 * Im_Data (kk);
kk += ispan;
} while (kk <= nt);
tmp = s1 * s2;
s2 = s1 * c2 + c1 * s2;
c2 = c1 * c2 - tmp;
kk = kk - nt + kspan;
} while (kk <= ispan);
c2 = c1 - (cd * c1 + sd * s1);
s1 += sd * c1 - cd * s1;
c1 = 2.0 - (c2 * c2 + s1 * s1);
s1 *= c1;
c2 *= c1;
kk = kk - ispan + jc;
} while (kk <= kspan);
kk = kk - kspan + jc + inc;
} while (kk <= jc + jc);
break;
#endif /* FFT_RADIX4 */
}
}
/* permute the results to normal order -- done in two stages */
/* permutation for square factors of n */
Permute_Results:
Perm [0] = ns;
if (kt)
{
int k2;
k = kt + kt + 1;
if (k > nFactor)
k--;
Perm [k] = jc;
j = 1;
do {
Perm [j] = Perm [j - 1] / factor [j - 1];
Perm [k - 1] = Perm [k] * factor [j - 1];
j++;
k--;
} while (j < k);
k3 = Perm [k];
kspan = Perm [1];
kk = jc + 1;
k2 = kspan + 1;
j = 1;
if (nPass != nTotal)
{
/* permutation for multivariate transform */
Permute_Multi:
do {
do {
k = kk + jc;
do {
/* swap
* Re_Data (kk) <> Re_Data (k2)
* Im_Data (kk) <> Im_Data (k2)
*/
REAL tmp;
tmp = Re_Data (kk); Re_Data (kk) = Re_Data (k2); Re_Data (k2) = tmp;
tmp = Im_Data (kk); Im_Data (kk) = Im_Data (k2); Im_Data (k2) = tmp;
kk += inc;
k2 += inc;
} while (kk < k);
kk += (ns - jc);
k2 += (ns - jc);
} while (kk < nt);
k2 = k2 - nt + kspan;
kk = kk - nt + jc;
} while (k2 < ns);
do {
do {
k2 -= Perm [j - 1];
j++;
k2 = Perm [j] + k2;
} while (k2 > Perm [j - 1]);
j = 1;
do {
if (kk < k2)
goto Permute_Multi;
kk += jc;
k2 += kspan;
} while (k2 < ns);
} while (kk < ns);
}
else
{
/* permutation for single-variate transform (optional code) */
Permute_Single:
do {
/* swap
* Re_Data (kk) <> Re_Data (k2)
* Im_Data (kk) <> Im_Data (k2)
*/
REAL t;
t = Re_Data (kk); Re_Data (kk) = Re_Data (k2); Re_Data (k2) = t;
t = Im_Data (kk); Im_Data (kk) = Im_Data (k2); Im_Data (k2) = t;
kk += inc;
k2 += kspan;
} while (k2 < ns);
do {
do {
k2 -= Perm [j - 1];
j++;
k2 = Perm [j] + k2;
} while (k2 > Perm [j - 1]);
j = 1;
do {
if (kk < k2)
goto Permute_Single;
kk += inc;
k2 += kspan;
} while (k2 < ns);
} while (kk < ns);
}
jc = k3;
}
if ((kt << 1) + 1 >= nFactor)
return 0;
ispan = Perm [kt];
/* permutation for square-free factors of n */
j = nFactor - kt;
factor [j] = 1;
do {
factor [j - 1] *= factor [j];
j--;
} while (j != kt);
nn = factor [kt] - 1;
kt++;
if (nn > maxPerm)
goto Memory_Error;
j = jj = 0;
for (;;) {
int k2;
k = kt + 1;
k2 = factor [kt - 1];
kk = factor [k - 1];
j++;
if (j > nn)
break; /* exit infinite loop */
jj += kk;
while (jj >= k2)
{
jj -= k2;
k2 = kk;
kk = factor [k++];
jj += kk;
}
Perm [j - 1] = jj;
}
/* determine the permutation cycles of length greater than 1 */
j = 0;
for (;;) {
do {
kk = Perm [j++];
} while (kk < 0);
if (kk != j)
{
do {
k = kk;
kk = Perm [k - 1];
Perm [k - 1] = -kk;
} while (kk != j);
k3 = kk;
}
else
{
Perm [j - 1] = -j;
if (j == nn)
break; /* exit infinite loop */
}
}
maxFactors *= inc;
/* reorder a and b, following the permutation cycles */
for (;;) {
j = k3 + 1;
nt -= ispan;
ii = nt - inc + 1;
if (nt < 0)
break; /* exit infinite loop */
do {
do {
j--;
} while (Perm [j - 1] < 0);
jj = jc;
do {
int k2;
if (jj < maxFactors) kspan = jj; else kspan = maxFactors;
jj -= kspan;
k = Perm [j - 1];
kk = jc * k + ii + jj;
k1 = kk + kspan;
k2 = 0;
do {
Rtmp [k2] = Re_Data (k1);
Itmp [k2] = Im_Data (k1);
k2++;
k1 -= inc;
} while (k1 != kk);
do {
k1 = kk + kspan;
k2 = k1 - jc * (k + Perm [k - 1]);
k = -Perm [k - 1];
do {
Re_Data (k1) = Re_Data (k2);
Im_Data (k1) = Im_Data (k2);
k1 -= inc;
k2 -= inc;
} while (k1 != kk);
kk = k2;
} while (k != j);
k1 = kk + kspan;
k2 = 0;
do {
Re_Data (k1) = Rtmp [k2];
Im_Data (k1) = Itmp [k2];
k2++;
k1 -= inc;
} while (k1 != kk);
} while (jj);
} while (j != 1);
}
return 0; /* exit point here */
/* alloc or other problem, do some clean-up */
Memory_Error:
fprintf (stderr, "Error: " FFTRADIXS "() - insufficient memory.\n");
fft_free (); /* free-up memory */
return -1;
}
#endif /* _FFTN_C */
/*----------------------- end-of-file (C source) -----------------------*/
|