1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
##-*- Mode: CPerl -*-
##======================================================================
## Header Administrivia
##======================================================================
use PDL::VectorValued::Dev;
my $VERSION = '1.24.1'; ##-- update with perl-reversion from Perl::Version module
pp_setversion($VERSION);
##-- for integer-type keys
require "../Config.pm";
my $INT_TYPES = join('',@{$PDL::CCS::Config::ccsConfig{INT_TYPE_CHRS}});
##-- PDL::PP debugging
#$::PP_VERBOSE = 1;
##------------------------------------------------------
## pm headers
pp_addpm({At=>'Top'},<<'EOPM');
#use PDL::CCS::Version;
use strict;
=pod
=head1 NAME
PDL::CCS::MatrixOps - Low-level matrix operations for compressed storage sparse PDLs
=head1 SYNOPSIS
use PDL;
use PDL::CCS::MatrixOps;
##---------------------------------------------------------------------
## ... stuff happens
=cut
EOPM
## /pm additions
##------------------------------------------------------
##------------------------------------------------------
## Exports: None
#pp_export_nothing();
##------------------------------------------------------
## Includes / defines
pp_addhdr(<<'EOH');
#include <math.h> /*-- for NAN --*/
#include "../Utils/ccsutils.h"
EOH
##------------------------------------------------------
## index datatype
require "../Config.pm";
our $INDX = $PDL::CCS::Config::ccsConfig{INDX_SIG};
pp_addpm( $PDL::CCS::Config::ccsConfig{INDX_FUNCDEF} );
pp_addhdr( $PDL::CCS::Config::ccsConfig{INDX_TYPEDEF} );
##======================================================================
## C Utilities
##======================================================================
# (none)
##======================================================================
## PDL::PP Wrappers
##======================================================================
##======================================================================
## Operations: matmult2d
##======================================================================
# TODO: support BAD values in ccs_matmult2d_sdd (especially missing==BAD).
# + Problematic because we use $zc() as an initializer, which for missing==BAD
# winds up setting the entire result to BAD.
# + missing==BAD support might need a temporary to count the number
# of (non-)missing "N" values per "O", and only add in $zc() if required (in which
# case we wouldn't want/need to pass in $zc() at all)
# + probably doable with an 'indx [t]nnzc(N)' temporary
##--------------------------------------------------------------
pp_def
('ccs_matmult2d_sdd',
Pars => ("\n "
.join("\n ",
"$INDX ixa(Two=2,NnzA); nza(NnzA); missinga();", ## a(M,N) (M~i, N~x): formerly here as a(N,M)
'b(O,M);', ## b(O,M) (O~z, M~i)
'zc(O);', ## zc(O)
'[o]c(O,N)', ## c(O,N) (O~z, N~x)
'')),
HandleBad => 1,
OtherPars => "PDL_Indx sizeN;",
RedoDimsCode => q{
/*-- we're getting SIZE(N)==1 if c() is passed in as null here too --*/
if ( CCS_PDL_IS_NULL($PDL(c)) )
$SIZE(N) = $COMP(sizeN);
},
Code => q{
broadcastloop %{
//-- initialize: set output to zc()
loop (O) %{
$GENERIC(zc) zc_o = $zc();
loop (N) %{ $c() = zc_o; %}
%}
//
//-- main loop
loop (NnzA) %{
CCS_Indx mi = $ixa(Two=>0);
CCS_Indx ni = $ixa(Two=>1);
loop (O) %{
//--# c(o,n) = sum for m=1 to M [a(m,n) * b(o,m)]
$c(N=>ni) += $b(M=>mi) * ($nza() - $missinga());
%}
%}
%}
if ($PDLSTATEISBAD(nza)
|| $PDLSTATEISBAD(missinga)
|| $PDLSTATEISBAD(b)
|| $PDLSTATEISBAD(zc)) {
$PDLSTATESETBAD(c);
} else {
$PDLSTATESETGOOD(c);
}
},
Doc =>
(q{
Two-dimensional matrix multiplication of a sparse index-encoded PDL
$a() with a dense pdl $b(), with output to a dense pdl $c().
The sparse input PDL $a() should be passed here with 0th
dimension "M" and 1st dimension "N", just as for the
built-in PDL::Primitive::matmult().
"Missing" values in $a() are treated as $missinga(), which shouldn't
be BAD or infinite, but otherwise ought to be handled correctly.
The input pdl $zc() is used to pass the cached contribution of
a $missinga()-row ("M") to an output column ("O"), i.e.
$zc = ((zeroes($M,1)+$missinga) x $b)->flat;
$SIZE(Two) must be 2.
}),
); ##--/ccs_matmult2d_sdd
##--------------------------------------------------------------
pp_def
('ccs_matmult2d_zdd',
Pars => ("\n "
.join("\n ",
"$INDX ixa(Two=2,NnzA); nza(NnzA);", ## a(M,N) (M~i, N~x)
'b(O,M);', ## b(O,M) (O~z, M~i)
'[o]c(O,N)', ## c(O,N) (O~z, N~x)
'')),
OtherPars => "PDL_Indx sizeN;",
RedoDimsCode => q{
/*-- we're getting SIZE(N)==1 if c() is passed in as null here too --*/
if ( CCS_PDL_IS_NULL($PDL(c)) )
$SIZE(N) = $COMP(sizeN);
},
HandleBad => 1,
Code => q{
broadcastloop %{
//-- initialize output to zero
loop (N) %{
loop (O) %{
$c()=0;
%}
%}
//
//-- main loop over CCS-encoded a()
loop (NnzA) %{
CCS_Indx Mi = $ixa(Two=>0);
CCS_Indx Ni = $ixa(Two=>1);
loop (O) %{
PDL_IF_BAD( if ($ISBAD(nza()) || $ISBAD(b(M=>Mi)) || $ISBAD(c(N=>Ni))) { $SETBAD(c(N=>Ni)); continue; }, )
$c(N=>Ni) += $nza() * $b(M=>Mi);
%}
%}
%}
if ( $PDLSTATEISBAD(nza) || $PDLSTATEISBAD(b) ) {
$PDLSTATESETBAD(c);
} else {
$PDLSTATESETGOOD(c);
}
},
Doc => q{
Two-dimensional matrix multiplication of a sparse index-encoded PDL
$a() with a dense pdl $b(), with output to a dense pdl $c().
The sparse input PDL $a() should be passed here with 0th
dimension "M" and 1st dimension "N", just as for the
built-in PDL::Primitive::matmult().
"Missing" values in $a() are treated as zero.
$SIZE(Two) must be 2.
},
); ##--/ccs_matmult2d_zdd
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ccs_vnorm: pp_def
pp_def
('ccs_vnorm',
Pars => ("\n "
.join("\n ",
"$INDX acols(NnzA); avals(NnzA);", ##-- logical (M,N)~(T,D) with acols~Mi
"float+ [o]vnorm(M);", ##-- (M)~(T)
''
)),
OtherPars => "PDL_Indx sizeM=>M;",
HandleBad => 1,
Code => q{
broadcastloop %{
CCS_Indx am;
$GENERIC(avals) av;
/*-- initialize --*/
loop (M) %{ $vnorm() = 0; %}
/*-- guts: compute vnorm[mi] = \sum_{ni=1}^N a[mi,ni]**2 --*/
loop (NnzA) %{
PDL_IF_BAD(if ($ISBAD(avals())) continue;,)
am = $acols();
av = $avals();
$vnorm(M=>am) += av * av;
%}
/*-- finalize: set vnorm[*] = sqrt(vnorm[*]) --*/
loop (M) %{ $vnorm() = sqrt($vnorm()); %}
%}
$PDLSTATESETGOOD(vnorm);
},
Doc=> q{
Computes the Euclidean lengths of each column-vector $a(i,*) of a sparse index-encoded pdl $a()
of logical dimensions (M,N), with output to a dense piddle $vnorm().
"Missing" values in $a() are treated as zero,
and $acols() specifies the (unsorted) indices along the logical dimension M of the corresponding non-missing
values in $avals().
This is basically the same thing as:
$vnorm = ($a**2)->xchg(0,1)->sumover->sqrt;
... but should be must faster to compute for sparse index-encoded piddles.
},
BadDoc => q{ccs_vnorm() always clears the bad-status flag on $vnorm().},
); ##-- /ccs_vnorm
##--------------------------------------------------------------
## ccs_vcos_zdd : ccs-matrix vs. dense-vector, output=dense, anorm=optional
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ccs_vcos_zdd: pmcode
pp_add_exported('', "ccs_vcos_zdd");
pp_addpm <<'EOPM';
=pod
=head2 ccs_vcos_zdd
=for sig
Signature: (
indx ixa(2,NnzA); nza(NnzA);
b(N);
float+ [o]vcos(M);
float+ [t]anorm(M);
PDL_Indx sizeM=>M;
)
Computes the vector cosine similarity of a dense row-vector $b(N) with respect to each column $a(i,*)
of a sparse index-encoded PDL $a() of logical dimensions (M,N), with output to a dense piddle
$vcos(M).
"Missing" values in $a() are treated as zero,
and magnitudes for $a() are passed in the optional parameter $anorm(), which will be implicitly
computed using L<ccs_vnorm|/ccs_vnorm> if the $anorm() parameter is omitted or empty.
This is basically the same thing as:
$anorm //= ($a**2)->xchg(0,1)->sumover->sqrt;
$vcos = ($a * $b->slice("*1,"))->xchg(0,1)->sumover / ($anorm * ($b**2)->sumover->sqrt);
... but should be must faster to compute.
Output values in $vcos() are cosine similarities in the range [-1,1],
except for zero-magnitude vectors which will result in NaN values in $vcos().
If you need non-negative distances, follow this up with a:
$vcos->minus(1,$vcos,1)
$vcos->inplace->setnantobad->inplace->setbadtoval(0); ##-- minimum distance for NaN values
to get distances values in the range [0,2]. You can use PDL threading to batch-compute distances for
multiple $b() vectors simultaneously:
$bx = random($N, $NB); ##-- get $NB random vectors of size $N
$vcos = ccs_vcos_zdd($ixa,$nza, $bx, $M); ##-- $vcos is now ($M,$NB)
=for bad
ccs_vcos_zdd() always clears the bad status flag on the output piddle $vcos.
=cut
sub ccs_vcos_zdd {
my ($ixa,$nza,$b) = @_;
barf("Usage: ccs_vcos_zdd(ixa, nza, b, vcos?, anorm?, M?)") if (grep {!defined($_)} ($ixa,$nza,$b));
my ($anorm,$vcos,$M);
foreach (@_[3..$#_]) {
if (!defined($M) && !UNIVERSAL::isa($_,"PDL")) { $M=$_; }
elsif (!defined($vcos)) { $vcos = $_; } ##-- compat: pass $vcos() in first
elsif (!defined($anorm)) { $anorm = $_; }
}
##-- get M
$M = $vcos->dim(0) if (!defined($M) && defined($vcos) && !$vcos->isempty);
$M = $anorm->dim(0) if (!defined($M) && defined($anorm) && !$anorm->isempty);
$M = $ixa->slice("(0),")->max+1 if (!defined($M));
##-- compat: implicitly compute anorm() if required
$anorm = $ixa->slice("(0),")->ccs_vnorm($nza, $M) if (!defined($anorm) || $anorm->isempty);
##-- guts
$ixa->_ccs_vcos_zdd($nza,$b, $anorm, ($vcos//=PDL->null));
return $vcos;
}
*PDL::ccs_vcos_zdd = \&ccs_vcos_zdd;
EOPM
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ccs_vcos_zdd
pp_def
('_ccs_vcos_zdd',
Pars => ("\n "
.join("\n ",
"$INDX ixa(Two=2,NnzA); nza(NnzA);", ##-- logical (M,N)
"b(N);", ##-- logical (1,N)
"float+ anorm(M);", ##-- dense (required)
"float+ [o]vcos(M);",
)),
HandleBad => 1,
Code => q{
CCS_Indx an,am, bm;
$GENERIC(anorm) bnorm;
$GENERIC(nza) av;
broadcastloop %{
/*-- cache bnorm as \sum_{i=1}^N b[i]**2 --*/
bnorm = 0;
loop (N) %{
PDL_IF_BAD(if ($ISBAD(b())) continue;,)
bnorm += $b() * $b();
%}
bnorm = sqrt(bnorm);
if (bnorm == 0) {
/*-- pathological case: return all NaN --*/
loop(M) %{ $vcos() = NAN; %}
}
else {
/*-- guts: initialize --*/
loop (M) %{ $vcos() = 0; %}
/*-- guts: compute \sum_{i=1}^N (a[i]*b[i]) in vcos() --*/
loop (NnzA) %{
am = $ixa(Two=>0);
an = $ixa(Two=>1);
PDL_IF_BAD(if ($ISBAD(nza()) || $ISBAD(b(N=>an))) continue;,)
$vcos(M=>am) += $nza() * $b(N=>an);
%}
/*-- guts: factor out vector magnitudes (Euclidean norms ||a||*||b||), cached in anorm(), bnorm --*/
loop (M) %{
if ($anorm() != 0) {
$vcos() /= ($anorm() * bnorm);
} else {
/*-- bogus anorm(), return NaN --*/
$vcos() = NAN;
}
%}
}
%}
$PDLSTATESETGOOD(vcos);
},
Doc=> q{Guts for L<ccs_vcos_zdd()|/ccs_vcos_zdd>, with slightly different calling conventions.},
BadDoc=> q{Always clears the bad status flag on the output piddle $vcos.},
); ##-- /_ccs_vcos_zdd
##--------------------------------------------------------------
## ccs_vcos_pzd : ptr(1)-matrix vs. dense-vector, output=dense, anorm=optional
##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ccs_vcos_pzd
pp_def(
'ccs_vcos_pzd',
Pars => ("\n "
.join("\n ",
"$INDX aptr(Nplus1); $INDX acols(NnzA); avals(NnzA);", ##-- logical (M,N)~(T,D) with ptr(1)
"$INDX brows(NnzB); bvals(NnzB);", ##-- logical (1,N)~(1,D)
"anorm(M);", ##-- (M)~(T)
"float+ [o]vcos(M);", ##-- (M)~(T)
)),
HandleBad => 1,
Code => q{
CCS_Indx bn,bn1, alo,ahi, am,anzi;
$GENERIC(anorm) bnorm;
broadcastloop %{
/*-- guts: initialize --*/
bnorm = 0;
loop (M) %{ $vcos() = 0; %}
/*-- guts: compute \sum_{i=1}^N (a[i]*b[i]) in vcos(), caching bnorm as \sum_{i=1}^N b[i]**2 --*/
loop (NnzB) %{
bn = $brows();
bn1 = bn + 1;
alo = $aptr(Nplus1=>bn);
ahi = $aptr(Nplus1=>bn1);
PDL_IF_BAD(if ($ISBAD(bvals())) continue;,)
bnorm += $bvals() * $bvals();
for (anzi=alo; anzi < ahi; ++anzi) {
am = $acols(NnzA=>anzi);
PDL_IF_BAD(if ($ISBAD(avals(NnzA=>anzi))) continue;,)
$vcos(M=>am) += $avals(NnzA=>anzi) * $bvals();
}
%}
/*-- guts: finalize: factor out vector magnitudes (Euclidean norms ||a||*||b||), cached in anorm(), bnorm --*/
bnorm = sqrt(bnorm);
if (bnorm == 0) {
/*-- bogus bnorm, return all NaN --*/
loop (M) %{ $vcos() = NAN; %}
} else {
loop (M) %{
if ($anorm() != 0 PDL_IF_BAD(&& $ISGOOD(anorm()),)) {
$vcos() /= ($anorm() * bnorm);
} else {
/*-- bogus anorm(), return NaN --*/
$vcos() = NAN;
}
%}
}
%}
$PDLSTATESETGOOD(vcos);
},
BadDoc=> q{ccs_vcos_pzd() always clears the bad status flag on the output piddle $vcos.},
Doc => q{
Computes the vector cosine similarity of a sparse index-encoded row-vector $b() of logical dimension (N)
with respect to each column $a(i,*) a sparse Harwell-Boeing row-encoded PDL $a() of logical dimensions (M,N),
with output to a dense piddle $vcos(M).
"Missing" values in $a() are treated as zero,
and magnitudes for $a() are passed in the obligatory parameter $anorm().
Usually much faster than L<ccs_vcos_zdd()|/ccs_vcos_zdd> if a CRS pointer over logical dimension (N) is available
for $a().
},
); ##-- /_ccs_vcos_pzd
##======================================================================
## Footer Administrivia
##======================================================================
##------------------------------------------------------
## pm additions: footer
pp_addpm(<<'EOPM');
##---------------------------------------------------------------------
=pod
=head1 ACKNOWLEDGEMENTS
Perl by Larry Wall.
PDL by Karl Glazebrook, Tuomas J. Lukka, Christian Soeller, and others.
=cut
##----------------------------------------------------------------------
=pod
=head1 KNOWN BUGS
We should really implement matrix multiplication in terms of
inner product, and have a good sparse-matrix only implementation
of the former.
=cut
##---------------------------------------------------------------------
=pod
=head1 AUTHOR
Bryan Jurish E<lt>moocow@cpan.orgE<gt>
=head2 Copyright Policy
All other parts Copyright (C) 2009-2024, Bryan Jurish. All rights reserved.
This package is free software, and entirely without warranty.
You may redistribute it and/or modify it under the same terms
as Perl itself.
=head1 SEE ALSO
perl(1), PDL(3perl)
=cut
EOPM
# Always make sure that you finish your PP declarations with
# pp_done
pp_done();
##----------------------------------------------------------------------
|