1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
#include <stdio.h>
#include <math.h>
/* Needed this to compile on strawberry-perl-5.40.0.1-64bit-PDL */
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define epsilon 0.008856
#define kappa 903.3
struct pixel {
double a;
double b;
double c;
};
#include "color_space.h" /* Local decs */
/*** util functions ***/
double _apow (double a, double p) {
return pow(a >= 0.0 ? a : -a, p);
}
#define EXTREME(var, a, b, c, cmp) \
double var = a; \
if (b cmp var) var = b; \
if (c cmp var) var = c
#define BOUNDED(v, min, max) while (v < min) v += max;while (v >= max) v -= max
#define CALC_HS(h, s, max, delta, r, g, b, satscale) \
/* set up a greyscale if rgb values are identical */ \
/* Note: automatically includes max = 0 */ \
if (delta <= 0.0) { \
h = s = 0; \
return; \
} \
s = delta / satscale; \
h = (r == max) ? (g - b) / delta : \
(g == max) ? 2 + (b - r) / delta : \
4 + (r - g) / delta; \
h *= 60.0; \
BOUNDED(h, 0, 360)
double _rad2deg( double rad )
{
return 180.0 * rad / M_PI;
}
double _deg2rad( double deg )
{
return deg * (M_PI / 180.0);
}
void _mult_v3_m33( struct pixel *p, double *m0, double *m1, double *m2, double *result )
{
result[0] = p->a * m0[0] + p->b * m1[0] + p->c * m2[0];
result[1] = p->a * m0[1] + p->b * m1[1] + p->c * m2[1];
result[2] = p->a * m0[2] + p->b * m1[2] + p->c * m2[2];
}
/* ~~~~~~~~~~:> */
double rgb_quant( double p, double q, double h )
{
BOUNDED(h, 0, 360);
if (h < 60) { return p + (q-p)*h/60; }
else if (h < 180) { return q; }
else if (h < 240) { return p + (q-p)*(240-h)/60; }
else { return p; }
}
void rgb2cmyk( double *rgb, double *cmyk )
{
struct pixel cmy = { 1.0-rgb[0], 1.0-rgb[1], 1.0-rgb[2] };
EXTREME(k, cmy.a, cmy.b, cmy.c, <);
cmyk[0] = cmy.a - k;
cmyk[1] = cmy.b - k;
cmyk[2] = cmy.c - k;
cmyk[3] = k;
}
void cmyk2rgb( double *cmyk, double *rgb )
{
double k = cmyk[3];
rgb[0] = 1.0 - cmyk[0] - k;
rgb[1] = 1.0 - cmyk[1] - k;
rgb[2] = 1.0 - cmyk[2] - k;
}
void hsl2rgb( double *hsl, double *rgb )
{
double h = hsl[0];
double s = hsl[1];
double l = hsl[2];
double p, q;
if ( l <= 0.5) {
p = l*(1 - s);
q = 2*l - p;
}
else {
q = l + s - (l*s);
p = 2*l - q;
}
rgb[0] = rgb_quant(p, q, h+120);
rgb[1] = rgb_quant(p, q, h);
rgb[2] = rgb_quant(p, q, h-120);
}
void rgb2hsl( double *rgb, double *hsl )
{
double r = rgb[0];
double g = rgb[1];
double b = rgb[2];
/* compute the min and max */
EXTREME(max, r, g, b, >);
EXTREME(min, r, g, b, <);
double delta = max - min;
double sum = max + min;
/* luminance */
hsl[2] = sum / 2.0;
CALC_HS(hsl[0], hsl[1], max, delta, r, g, b, (hsl[2] <= 0.5 ? sum : (2.0 - sum)));
}
void rgb2hsv( double *rgb, double *hsv )
{
double r = rgb[0];
double g = rgb[1];
double b = rgb[2];
/* compute the min and max */
EXTREME(max, r, g, b, >);
EXTREME(min, r, g, b, <);
/* got V */
hsv[2] = max;
double delta = max - min;
CALC_HS(hsv[0], hsv[1], max, delta, r, g, b, max);
}
void hsv2rgb( double *hsv, double *rgb )
{
double h = hsv[0];
double s = hsv[1];
double v = hsv[2];
h /= 60.0;
double i = floor( h );
double f = h - i;
double p = v * (1 - s);
double q = v * (1 - s * f);
double t = v * (1 - s * (1 - f));
switch( (int) i )
{
case 0:
rgb[0] = v;
rgb[1] = t;
rgb[2] = p;
break;
case 1:
rgb[0] = q;
rgb[1] = v;
rgb[2] = p;
break;
case 2:
rgb[0] = p;
rgb[1] = v;
rgb[2] = t;
break;
case 3:
rgb[0] = p;
rgb[1] = q;
rgb[2] = v;
break;
case 4:
rgb[0] = t;
rgb[1] = p;
rgb[2] = v;
break;
default:
rgb[0] = v;
rgb[1] = p;
rgb[2] = q;
break;
}
}
void rgb2xyz( double *rgb, double gamma, double *m0, double *m1, double *m2, double *xyz )
{
rgb2linear(rgb, gamma, xyz);
struct pixel p = { xyz[0], xyz[1], xyz[2] };
_mult_v3_m33( &p, m0, m1, m2, xyz );
}
void rgb2linear( double *rgb, double gamma, double *out )
{
int i;
if (gamma < 0) { /* special case for sRGB gamma curve */
for (i = 0; i < 3; i++)
out[i] = fabs(rgb[i]) <= 0.04045 ? rgb[i] / 12.92 : _apow( (rgb[i] + 0.055)/1.055, 2.4 );
} else if (gamma == 1.0) { /* copy if different locations */
if (rgb != out)
for (i = 0; i < 3; i++)
out[i] = rgb[i];
} else {
for (i = 0; i < 3; i++)
out[i] = _apow(rgb[i], gamma);
}
}
void xyz2rgb( double *xyz, double gamma, double *m0, double *m1, double *m2, double *rgb )
{
struct pixel p = { xyz[0], xyz[1], xyz[2] };
_mult_v3_m33( &p, m0, m1, m2, rgb );
rgb2gamma(rgb, gamma, rgb);
}
void rgb2gamma( double *rgb, double gamma, double *out )
{
int i;
if (gamma < 0) { /* special case for sRGB gamma curve */
for (i = 0; i < 3; i++)
out[i] = (fabs(rgb[i]) <= 0.0031308) ? 12.92 * rgb[i] : 1.055 * _apow(rgb[i], 1.0/2.4) - 0.055;
} else if (gamma == 1.0) { /* copy if different locations */
if (rgb != out)
for (i = 0; i < 3; i++)
out[i] = rgb[i];
} else {
for (i = 0; i < 3; i++)
out[i] = _apow(rgb[i], 1.0 / gamma);
}
}
void xyY2xyz( double *xyY, double *xyz )
{
if ( xyY[1] == 0.0 ) {
xyz[0] = xyz[1] = xyz[2] = 0.0;
return;
}
xyz[0] = xyY[0] / xyY[1];
xyz[1] = 1.0;
xyz[2] = (1.0 - xyY[0] - xyY[1]) / xyY[1];
}
void xyz2lab( double *xyz, double *w, double *lab )
{
double xr = xyz[0] / w[0];
double yr = xyz[1] / w[1];
double zr = xyz[2] / w[2];
double fx = (xr > epsilon)? pow(xr, 1.0/3.0) : (kappa * xr + 16.0) / 116.0;
double fy = (yr > epsilon)? pow(yr, 1.0/3.0) : (kappa * yr + 16.0) / 116.0;
double fz = (zr > epsilon)? pow(zr, 1.0/3.0) : (kappa * zr + 16.0) / 116.0;
lab[0] = 116.0 * fy - 16.0;
lab[1] = 500.0 * (fx - fy);
lab[2] = 200.0 * (fy - fz);
}
void lab2lch( double *lab, double *lch )
{
lch[0] = lab[0];
lch[1] = sqrt( pow(lab[1], 2) + pow(lab[2], 2) );
lch[2] = _rad2deg( atan2( lab[2], lab[1] ) );
BOUNDED(lch[2], 0.0, 360.0);
}
void lch2lab( double *lch, double *lab )
{
/* l is set */
lab[0] = lch[0];
double c = lch[1];
double h = _deg2rad( lch[2] );
double th = tan(h);
double *a = lab+1;
double *b = lab+2;
*a = c / sqrt( pow(th,2) + 1 );
*b = sqrt( pow(c, 2) - pow(*a, 2) );
if (h < 0.0)
h += 2*M_PI;
if (h > M_PI/2 && h < M_PI*3/2)
*a = -*a;
if (h > M_PI)
*b = -*b;
}
void lab2xyz( double *lab, double *w, double *xyz )
{
double yr = (lab[0] > kappa * epsilon) ? pow( (lab[0] + 16.0)/116.0, 3 ) : lab[0] / kappa;
double fy = (yr > epsilon) ? (lab[0] + 16.0)/116.0 : (kappa * yr + 16.0)/116.0;
double fx = fy + lab[1] / 500.0;
double fz = fy - lab[2] / 200.0;
double xr = (pow(fx, 3) > epsilon) ? pow(fx, 3) : (fx * 116.0 - 16.0) / kappa;
double zr = (pow(fz, 3) > epsilon) ? pow(fz, 3) : (fz * 116.0 - 16.0) / kappa;
xyz[0] = xr * w[0];
xyz[1] = yr * w[1];
xyz[2] = zr * w[2];
}
|