File: Distr.pm

package info (click to toggle)
libpdl-gsl-perl 2.101-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 600 kB
  • sloc: perl: 1,587; ansic: 202; makefile: 9
file content (965 lines) | stat: -rw-r--r-- 16,094 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
#
# GENERATED WITH PDL::PP from lib/PDL/Stats/Distr.pd! Don't modify!
#
package PDL::Stats::Distr;

our @EXPORT_OK = qw(mme_beta pdf_beta mme_binomial pmf_binomial mle_exp pdf_exp mme_gamma pdf_gamma mle_gaussian pdf_gaussian mle_geo pmf_geo mle_geosh pmf_geosh mle_lognormal mme_lognormal pdf_lognormal mme_nbd pmf_nbd mme_pareto pdf_pareto mle_poisson pmf_poisson pmf_poisson_stirling pmf_poisson_factorial );
our %EXPORT_TAGS = (Func=>\@EXPORT_OK);

use PDL::Core;
use PDL::Exporter;
use DynaLoader;


   
   our @ISA = ( 'PDL::Exporter','DynaLoader' );
   push @PDL::Core::PP, __PACKAGE__;
   bootstrap PDL::Stats::Distr ;







#line 7 "lib/PDL/Stats/Distr.pd"

use strict;
use warnings;

use Carp;
use PDL::LiteF;

my $DEV = ($^O =~ /win/i)? '/png' : '/xs';

=head1 NAME

PDL::Stats::Distr -- parameter estimations and probability density functions for distributions.

=head1 DESCRIPTION

Parameter estimate is maximum likelihood estimate when there is closed form estimate, otherwise it is method of moments estimate.

=head1 SYNOPSIS

    use PDL::LiteF;
    use PDL::Stats::Distr;

    # do a frequency (probability) plot with fitted normal curve
    my $data = grandom(100)->abs;

    my ($xvals, $hist) = $data->hist;

      # turn frequency into probability
    $hist /= $data->nelem;

      # get maximum likelihood estimates of normal curve parameters
    my ($m, $v) = $data->mle_gaussian();

      # fitted normal curve probabilities
    my $p = $xvals->pdf_gaussian($m, $v);

    use PDL::Graphics::PGPLOT::Window;
    my $win = pgwin( Dev=>"/xs" );

    $win->bin( $hist );
    $win->hold;
    $win->line( $p, {COLOR=>2} );
    $win->close;

Or, play with different distributions with B<plot_distr> :)

    $data->plot_distr( 'gaussian', 'lognormal' );

=cut
#line 76 "lib/PDL/Stats/Distr.pm"


=head1 FUNCTIONS

=cut






=head2 mme_beta

=for sig

  Signature: (a(n); float+ [o]alpha(); float+ [o]beta())

=for usage

    my ($a, $b) = $data->mme_beta();

=for ref

beta distribution. pdf: f(x; a,b) = 1/B(a,b) x^(a-1) (1-x)^(b-1)

=for bad

mme_beta processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mme_beta = \&PDL::mme_beta;






=head2 pdf_beta

=for sig

  Signature: (x(); a(); b(); float+ [o]p())

=for ref

probability density function for beta distribution. x defined on [0,1].

=for bad

pdf_beta processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pdf_beta = \&PDL::pdf_beta;






=head2 mme_binomial

=for sig

  Signature: (a(n); int [o]n_(); float+ [o]p())

=for usage

    my ($n, $p) = $data->mme_binomial;

=for ref

binomial distribution. pmf: f(k; n,p) = (n k) p^k (1-p)^(n-k) for k = 0,1,2..n

=for bad

mme_binomial processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mme_binomial = \&PDL::mme_binomial;






=head2 pmf_binomial

=for sig

  Signature: (ushort x(); ushort n(); p(); float+ [o]out())

=for ref

probability mass function for binomial distribution.

=for bad

pmf_binomial processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pmf_binomial = \&PDL::pmf_binomial;






=head2 mle_exp

=for sig

  Signature: (a(n); float+ [o]l())

=for usage

    my $lamda = $data->mle_exp;

=for ref

exponential distribution. mle same as method of moments estimate.

=for bad

mle_exp processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mle_exp = \&PDL::mle_exp;






=head2 pdf_exp

=for sig

  Signature: (x(); l(); float+ [o]p())

=for ref

probability density function for exponential distribution.

=for bad

pdf_exp processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pdf_exp = \&PDL::pdf_exp;






=head2 mme_gamma

=for sig

  Signature: (a(n); float+ [o]shape(); float+ [o]scale())

=for usage

    my ($shape, $scale) = $data->mme_gamma();

=for ref

two-parameter gamma distribution

=for bad

mme_gamma processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mme_gamma = \&PDL::mme_gamma;






=head2 pdf_gamma

=for sig

  Signature: (x(); a(); t(); float+ [o]p())

=for ref

probability density function for two-parameter gamma distribution.

=for bad

pdf_gamma processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pdf_gamma = \&PDL::pdf_gamma;






=head2 mle_gaussian

=for sig

  Signature: (a(n); float+ [o]m(); float+ [o]v())

=for usage

    my ($m, $v) = $data->mle_gaussian();

=for ref

gaussian aka normal distribution. same results as $data->average and $data->var. mle same as method of moments estimate.

=for bad

mle_gaussian processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mle_gaussian = \&PDL::mle_gaussian;






=head2 pdf_gaussian

=for sig

  Signature: (x(); m(); v(); float+ [o]p())

=for ref

probability density function for gaussian distribution.

=for bad

pdf_gaussian processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pdf_gaussian = \&PDL::pdf_gaussian;






=head2 mle_geo

=for sig

  Signature: (a(n); float+ [o]p())

=for ref

geometric distribution. mle same as method of moments estimate.

=for bad

mle_geo processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mle_geo = \&PDL::mle_geo;






=head2 pmf_geo

=for sig

  Signature: (ushort x(); p(); float+ [o]out())

=for ref

probability mass function for geometric distribution. x >= 0.

=for bad

pmf_geo processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pmf_geo = \&PDL::pmf_geo;






=head2 mle_geosh

=for sig

  Signature: (a(n); float+ [o]p())

=for ref

shifted geometric distribution. mle same as method of moments estimate.

=for bad

mle_geosh processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mle_geosh = \&PDL::mle_geosh;






=head2 pmf_geosh

=for sig

  Signature: (ushort x(); p(); float+ [o]out())

=for ref

probability mass function for shifted geometric distribution. x >= 1.

=for bad

pmf_geosh processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pmf_geosh = \&PDL::pmf_geosh;






=head2 mle_lognormal

=for sig

  Signature: (a(n); float+ [o]m(); float+ [o]v())

=for usage

    my ($m, $v) = $data->mle_lognormal();

=for ref

lognormal distribution. maximum likelihood estimation.

=for bad

mle_lognormal processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mle_lognormal = \&PDL::mle_lognormal;






=head2 mme_lognormal

=for sig

  Signature: (a(n); float+ [o]m(); float+ [o]v())

=for usage

    my ($m, $v) = $data->mme_lognormal();

=for ref

lognormal distribution. method of moments estimation.

=for bad

mme_lognormal processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mme_lognormal = \&PDL::mme_lognormal;






=head2 pdf_lognormal

=for sig

  Signature: (x(); m(); v(); float+ [o]p())

=for ref

probability density function for lognormal distribution. x > 0. v > 0.

=for bad

pdf_lognormal processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pdf_lognormal = \&PDL::pdf_lognormal;






=head2 mme_nbd

=for sig

  Signature: (a(n); float+ [o]r(); float+ [o]p())

=for usage

    my ($r, $p) = $data->mme_nbd();

=for ref

negative binomial distribution. pmf: f(x; r,p) = (x+r-1  r-1) p^r (1-p)^x for x=0,1,2...

=for bad

mme_nbd processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mme_nbd = \&PDL::mme_nbd;






=head2 pmf_nbd

=for sig

  Signature: (ushort x(); r(); p(); float+ [o]out())

=for ref

probability mass function for negative binomial distribution.

=for bad

pmf_nbd processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pmf_nbd = \&PDL::pmf_nbd;






=head2 mme_pareto

=for sig

  Signature: (a(n); float+ [o]k(); float+ [o]xm())

=for usage

    my ($k, $xm) = $data->mme_pareto();

=for ref

pareto distribution. pdf: f(x; k,xm) = k xm^k / x^(k+1) for x >= xm > 0.

=for bad

mme_pareto processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mme_pareto = \&PDL::mme_pareto;






=head2 pdf_pareto

=for sig

  Signature: (x(); k(); xm(); float+ [o]p())

=for ref

probability density function for pareto distribution. x >= xm > 0.

=for bad

pdf_pareto processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pdf_pareto = \&PDL::pdf_pareto;






=head2 mle_poisson

=for sig

  Signature: (a(n); float+ [o]l())

=for usage

    my $lamda = $data->mle_poisson();

=for ref

poisson distribution. pmf: f(x;l) = e^(-l) * l^x / x!

=for bad

mle_poisson processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mle_poisson = \&PDL::mle_poisson;






=head2 pmf_poisson

=for sig

  Signature: (x(); l(); float+ [o]p())

=for ref

Probability mass function for poisson distribution. Uses Stirling's formula for x > 85.

=for bad

pmf_poisson processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pmf_poisson = \&PDL::pmf_poisson;






=head2 pmf_poisson_stirling

=for sig

  Signature: (x(); l(); [o]p())

=for ref

Probability mass function for poisson distribution. Uses Stirling's formula for all values of the input. See http://en.wikipedia.org/wiki/Stirling's_approximation for more info.

=for bad

pmf_poisson_stirling processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pmf_poisson_stirling = \&PDL::pmf_poisson_stirling;






=head2 pmf_poisson_factorial

=for sig

  Signature: (ushort x(); l(); float+ [o]p())

=for ref

Probability mass function for poisson distribution. Input is limited to x < 170 to avoid gsl_sf_fact() overflow.

=for bad

pmf_poisson_factorial processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut





#line 652 "lib/PDL/Stats/Distr.pd"
sub PDL::pmf_poisson_factorial {
  my ($x, $l) = @_;
  my $pdlx = PDL->topdl($x);
  croak "Does not support input greater than 170. Please use pmf_poisson or pmf_poisson_stirling instead."
    if any($pdlx >= 170);
  PDL::_pmf_poisson_factorial_int($pdlx, $l, my $p = PDL->null);
  $p;
}
#line 806 "lib/PDL/Stats/Distr.pm"

*pmf_poisson_factorial = \&PDL::pmf_poisson_factorial;







#line 668 "lib/PDL/Stats/Distr.pd"

#line 669 "lib/PDL/Stats/Distr.pd"

=head2 plot_distr

=for ref

Plots data distribution. When given specific distribution(s) to fit, returns % ref to sum log likelihood and parameter values under fitted distribution(s). See FUNCTIONS above for available distributions.

=for options

Default options (case insensitive):

    MAXBN => 20,
      # see PDL::Graphics::PGPLOT::Window for next options
    WIN   => undef,   # pgwin object. not closed here if passed
                      # allows comparing multiple distr in same plot
                      # set env before passing WIN
    DEV   => '/xs' ,  # open and close dev for plotting if no WIN
                      # defaults to '/png' in Windows
    COLOR => 1,       # color for data distr

=for usage

Usage:

      # yes it threads :)
    my $data = grandom( 500, 3 )->abs;
      # ll on plot is sum across 3 data curves
    my ($ll, $pars)
      = $data->plot_distr( 'gaussian', 'lognormal', {DEV=>'/png'} );

      # pars are from normalized data (ie data / bin_size)
    print "$_\t@{$pars->{$_}}\n" for (sort keys %$pars);
    print "$_\t$ll->{$_}\n" for (sort keys %$ll);

=cut

*plot_distr = \&PDL::plot_distr;
sub PDL::plot_distr {
  require PDL::Graphics::PGPLOT::Window;
  my ($self, @distr) = @_;

  my %opt = (
    MAXBN => 20,
    WIN   => undef,     # pgwin object. not closed here if passed
    DEV   => $DEV,      # open and close default win if no WIN
    COLOR => 1,         # color for data distr
  );
  my $opt = pop @distr
    if ref $distr[-1] eq 'HASH';
  $opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);

  $self = $self->squeeze;

    # use int range, step etc for int xvals--pmf compatible
  my $INT = 1
    if grep { /(?:binomial)|(?:geo)|(?:nbd)|(?:poisson)/ } @distr;

  my ($range, $step, $step_int);
  $range = $self->max->sclr - $self->min->sclr;
  $step  = $range / $opt{MAXBN};
  $step_int = ($range <= $opt{MAXBN})? 1
            :                          PDL::ceil( $range / $opt{MAXBN} )
            ;
  $opt{MAXBN} = PDL::ceil( $range / $step )->min->sclr;

  my $hist = $self->double->histogram($step, $self->min->sclr, $opt{MAXBN});
    # turn fre into prob
  $hist /= $self->dim(0);

  my $xvals = $self->min->sclr + sequence( $opt{MAXBN} ) * $step;
  my $xvals_int
    = PDL::ceil($self->min->sclr) + sequence( $opt{MAXBN} ) * $step_int;
  $xvals_int = $xvals_int->where( $xvals_int <= $xvals->max )->sever;

  my $win = $opt{WIN};
  if (!$win) {
    $win = PDL::Graphics::PGPLOT::Window::pgwin( Dev=>$opt{DEV} );
    $win->env($xvals->minmax,0,1, {XTitle=>'xvals', YTitle=>'probability'});
  }

  $win->line( $xvals, $hist, { COLOR=>$opt{COLOR} } );

  if (!@distr) {
    $win->close
      unless defined $opt{WIN};
    return;
  }

  my (%ll, %pars, @text, $c);
  $c = $opt{COLOR};        # fitted lines start from ++$c
  for my $distr ( @distr ) {
      # find mle_ or mme_$distr;
    my @funcs = grep { /_$distr$/ } (keys %PDL::Stats::Distr::);
    if (!@funcs) {
      carp "Do not recognize $distr distribution!";
      next;
    }
      # might have mle and mme for a distr. sort so mle comes first
    @funcs = sort @funcs;
    my ($f_para, $f_prob) = @funcs[0, -1];

    my $nrmd = $self / $step;
    eval {
      my @paras = $nrmd->$f_para();
      $pars{$distr} = \@paras;

      @paras = map { $_->dummy(0) } @paras;
      $ll{$distr} = $nrmd->$f_prob( @paras )->log->sumover;
      push @text, sprintf "$distr  LL = %.2f", $ll{$distr}->sum;

      if ($f_prob =~ /^pdf/) {
        $win->line( $xvals, ($xvals/$step)->$f_prob(@paras), {COLOR=>++$c} );
      }
      else {
        $win->points( $xvals_int, ($xvals_int/$step_int)->$f_prob(@paras), {COLOR=>++$c} );
      }
    };
    carp $@ if $@;
  }
  $win->legend(\@text, ($xvals->min->sclr + $xvals->max->sclr)/2, .95,
               {COLOR=>[$opt{COLOR}+1 .. $c], TextFraction=>.75} );
  $win->close
    unless defined $opt{WIN};
  return (\%ll, \%pars);
}

=head1 DEPENDENCIES

GSL - GNU Scientific Library

=head1 SEE ALSO

PDL::Graphics::PGPLOT

PDL::GSL::CDF

=head1 AUTHOR

Copyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net>, David Mertens

All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation as described in the file COPYING in the PDL distribution.

=cut
#line 962 "lib/PDL/Stats/Distr.pm"

# Exit with OK status

1;