File: LINALG.pd

package info (click to toggle)
libpdl-gsl-perl 2.101-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 600 kB
  • sloc: perl: 1,587; ansic: 202; makefile: 9
file content (186 lines) | stat: -rw-r--r-- 4,809 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
use strict;
use warnings;

pp_addpm({At=>'Top'},<<'EOD');
use strict;
use warnings;

=head1 NAME

PDL::GSL::LINALG - PDL interface to linear algebra routines in GSL

=head1 SYNOPSIS

  use PDL::LiteF;
  use PDL::MatrixOps; # for 'x'
  use PDL::GSL::LINALG;
  my $A = pdl [
    [0.18, 0.60, 0.57, 0.96],
    [0.41, 0.24, 0.99, 0.58],
    [0.14, 0.30, 0.97, 0.66],
    [0.51, 0.13, 0.19, 0.85],
  ];
  my $B = sequence(2,4); # column vectors
  LU_decomp(my $lu=$A->copy, my $p=null, my $signum=null);
  # transpose so first dim means is vector, higher dims broadcast
  LU_solve($lu, $p, $B->transpose, my $x=null);
  $x = $x->inplace->transpose; # now can be matrix-multiplied

=head1 DESCRIPTION

This is an interface to the linear algebra package present in the
GNU Scientific Library. Functions are named as in GSL, but with the
initial C<gsl_linalg_> removed. They are provided in both real and
complex double precision.

Currently only LU decomposition interfaces here. Pull requests welcome!

EOD

pp_addpm({At=>'Bot'},<<'EOD');
=head1 SEE ALSO

L<PDL>

The GSL documentation for linear algebra is online at
L<https://www.gnu.org/software/gsl/doc/html/linalg.html>

=cut

EOD

pp_addhdr('
#include <gsl/gsl_linalg.h>
#include "gslerr.h"

#define MATRIX_SETUP(m, rows, cols, lda, datap) \\
  m.size1 = rows; \\
  m.size2 = cols; \\
  m.tda = lda; \\
  m.data = (double *)datap; \\
  m.owner = 0;

/* rely on optimiser for this to produce sensible code */
#define PERM_SETUP(p, psize, datap) \\
  gsl_permutation *p ## _local = gsl_permutation_alloc(psize); \\
  size_t *p ## _local_data = p ## _local->data; \\
  size_t p ## _i_local = 0; \\
  for (p ## _i_local = 0; p ## _i_local < (size_t)psize; p ## _i_local++) { \\
    p ## _local_data[p ## _i_local] = datap[p ## _i_local]; \\
  } \\
  p.data = p ## _local_data; \\
  p.size = psize;
#define PERM_RETURN(p, psize, datap) \\
  for (p ## _i_local = 0; p ## _i_local < (size_t)psize; p ## _i_local++) { \\
    datap[p ## _i_local] = p ## _local_data[p ## _i_local]; \\
  } \\
  gsl_permutation_free(p ## _local);

#define VECTOR_SETUP(v, vsize, datap) \\
  v.size = vsize; \\
  v.stride = 1; \\
  v.data = (double *)datap; \\
  v.owner = 0;
');

pp_def('LU_decomp',
        HandleBad => 0,
        Pars => '[io,phys]A(n,m); indx [o,phys]ipiv(p=CALC($PDL(A)->ndims > 1 ? PDLMIN($PDL(A)->dims[0], $PDL(A)->dims[1]) : 1)); int [o,phys]signum()',
        GenericTypes => [qw(C D)],
        Code => <<'EOF',
/* make sure the PDL data types match */
gsl_matrix$TDC(,_complex) m;
gsl_permutation p;
int s;
MATRIX_SETUP(m, $SIZE(m), $SIZE(n), $SIZE(n), $P(A))
PERM_SETUP(p, $SIZE(p), $P(ipiv))
GSLERR(gsl_linalg$TDC(,_complex)_LU_decomp, (&m, &p, &s))
PERM_RETURN(p, $SIZE(p), $P(ipiv))
$signum() = s;
EOF
        Doc => <<'EOF',
=for ref

LU decomposition of the given (real or complex) matrix.

EOF
);

pp_def('LU_solve',
        HandleBad => 0,
        Pars => '[phys]LU(n,m); indx [phys]ipiv(p); [phys]B(n); [o,phys]x(n)',
        GenericTypes => [qw(C D)],
        Code => <<'EOF',
gsl_matrix$TDC(,_complex) m;
gsl_permutation p;
gsl_vector$TDC(,_complex) b, x;
int s;
MATRIX_SETUP(m, $SIZE(m), $SIZE(n), $SIZE(n), $P(LU))
PERM_SETUP(p, $SIZE(p), $P(ipiv))
VECTOR_SETUP(b, $SIZE(n), $P(B))
VECTOR_SETUP(x, $SIZE(n), $P(x))
GSLERR(gsl_linalg$TDC(,_complex)_LU_solve, (&m, &p, &b, &x))
PERM_RETURN(p, $SIZE(p), $P(ipiv))
EOF
        Doc => <<'EOF',
=for ref

Solve C<A x = B> using the LU and permutation from L</LU_decomp>, real
or complex.

EOF
);

pp_def('LU_det',
        HandleBad => 0,
        Pars => '[phys]LU(n,m); int [phys]signum(); [o]det()',
        GenericTypes => [qw(C D)],
        Code => <<'EOF',
gsl_matrix$TDC(,_complex) m;
MATRIX_SETUP(m, $SIZE(m), $SIZE(n), $SIZE(n), $P(LU))
types (D) %{
  $det() = gsl_linalg_LU_det(&m, $signum());
%}
types (C) %{
  gsl_complex z = gsl_linalg_complex_LU_det(&m, $signum());
  $det() = GSL_REAL(z) + I*GSL_IMAG(z);
%}
EOF
        Doc => <<'EOF',
=for ref

Find the determinant from the LU decomp.

EOF
);

pp_def('solve_tridiag',
        HandleBad => 0,
        Pars => '[phys]diag(n); [phys]superdiag(n); [phys]subdiag(n); [phys]B(n); [o,phys]x(n)',
        GenericTypes => [qw(D)],
        Code => <<'EOF',
gsl_vector d, sup, sub, b, x;
VECTOR_SETUP(d, $SIZE(n), $P(diag))
VECTOR_SETUP(sup, $SIZE(n)-1, $P(superdiag))
VECTOR_SETUP(sub, $SIZE(n)-1, $P(subdiag))
VECTOR_SETUP(b, $SIZE(n), $P(B))
VECTOR_SETUP(x, $SIZE(n), $P(x))
#define CONST_VEC (const gsl_vector *)
GSLERR(gsl_linalg_solve_tridiag, (
  CONST_VEC &d, CONST_VEC &sup, CONST_VEC &sub, CONST_VEC &b, &x
))
#undef CONST_VEC
EOF
        Doc => <<'EOF',
=for ref

Solve C<A x = B> where A is a tridiagonal system. Real only, because
GSL does not have a complex function.

EOF
);

pp_add_boot('gsl_set_error_handler_off();
');

pp_done();