1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*
* DOES NOT WORK. probably because it is not compiled with the
* rest of the libary
* A modified version of the library function Mat_VarPrint2
* This allows to choose the number of columns and rows to
* be printed
*/
/** @brief Prints the variable information
*
* Prints to stdout the values of the @ref matvar_t structure
* @ingroup MAT
* @param matvar Pointer to the matvar_t structure
* @param printdata set to 1 if the Variables data should be printed, else 0
*/
void
Mat_VarPrint2( matvar_t *matvar, int printdata, int max_cols, int max_rows )
{
size_t nmemb;
int i, j;
const char *class_type_desc[16] = {"Undefined","Cell Array","Structure",
"Object","Character Array","Sparse Array","Double Precision Array",
"Single Precision Array", "8-bit, signed integer array",
"8-bit, unsigned integer array","16-bit, signed integer array",
"16-bit, unsigned integer array","32-bit, signed integer array",
"32-bit, unsigned integer array","64-bit, signed integer array",
"64-bit, unsigned integer array"};
const char *data_type_desc[23] = {"Unknown","8-bit, signed integer",
"8-bit, unsigned integer","16-bit, signed integer",
"16-bit, unsigned integer","32-bit, signed integer",
"32-bit, unsigned integer","IEEE 754 single-precision","RESERVED",
"IEEE 754 double-precision","RESERVED","RESERVED",
"64-bit, signed integer","64-bit, unsigned integer", "Matlab Array",
"Compressed Data","Unicode UTF-8 Encoded Character Data",
"Unicode UTF-16 Encoded Character Data",
"Unicode UTF-32 Encoded Character Data","","String","Cell Array",
"Structure"};
if ( matvar == NULL )
return;
if ( matvar->name )
printf(" Name: %s\n", matvar->name);
printf(" Rank: %d\n", matvar->rank);
if ( matvar->rank == 0 )
return;
printf("Dimensions: %zu",matvar->dims[0]);
nmemb = matvar->dims[0];
for ( i = 1; i < matvar->rank; i++ ) {
printf(" x %zu",matvar->dims[i]);
nmemb *= matvar->dims[i];
}
printf("\n");
printf("Class Type: %s",class_type_desc[matvar->class_type]);
if ( matvar->isComplex )
printf(" (complex)");
printf("\n");
if ( matvar->data_type )
printf(" Data Type: %s\n", data_type_desc[matvar->data_type]);
if ( MAT_C_STRUCT == matvar->class_type ) {
matvar_t **fields = (matvar_t **)matvar->data;
int nfields = matvar->internal->num_fields;
if ( nmemb*nfields > 0 ) {
printf("Fields[%zu] {\n", nfields*nmemb);
for ( i = 0; i < nfields*nmemb; i++ ) {
if ( NULL == fields[i] ) {
printf(" Name: %s\n Rank: %d\n",
matvar->internal->fieldnames[i%nfields],0);
} else {
Mat_VarPrint(fields[i],printdata);
}
}
printf("}\n");
} else {
printf("Fields[%d] {\n", nfields);
for ( i = 0; i < nfields; i++ )
printf(" Name: %s\n Rank: %d\n",
matvar->internal->fieldnames[i],0);
printf("}\n");
}
return;
} else if ( matvar->data == NULL || matvar->data_size < 1 ) {
return;
} else if ( MAT_C_CELL == matvar->class_type ) {
matvar_t **cells = (matvar_t **)matvar->data;
int ncells = matvar->nbytes / matvar->data_size;
printf("{\n");
for ( i = 0; i < ncells; i++ )
Mat_VarPrint(cells[i],printdata);
printf("}\n");
return;
} else if ( !printdata ) {
return;
}
printf("{\n");
if ( matvar->rank > 2 ) {
printf("I can't print more than 2 dimensions\n");
} else if ( matvar->rank == 1 && matvar->dims[0] > max_rows ) {
printf("I won't print more than %d elements in a vector\n",max_rows);
} else if ( matvar->rank==2 ) {
switch( matvar->class_type ) {
case MAT_C_DOUBLE:
case MAT_C_SINGLE:
#ifdef HAVE_MAT_INT64_T
case MAT_C_INT64:
#endif
#ifdef HAVE_MAT_UINT64_T
case MAT_C_UINT64:
#endif
case MAT_C_INT32:
case MAT_C_UINT32:
case MAT_C_INT16:
case MAT_C_UINT16:
case MAT_C_INT8:
case MAT_C_UINT8:
{
size_t stride = Mat_SizeOf(matvar->data_type);
if ( matvar->isComplex ) {
mat_complex_split_t *complex_data = matvar->data;
char *rp = complex_data->Re;
char *ip = complex_data->Im;
for ( i = 0; i < matvar->dims[0] && i < max_rows; i++ ) {
for ( j = 0; j < matvar->dims[1] && j < max_cols; j++ ) {
size_t idx = matvar->dims[0]*j+i;
Mat_PrintNumber(matvar->data_type,rp+idx*stride);
printf(" + ");
Mat_PrintNumber(matvar->data_type,ip+idx*stride);
printf("i ");
}
if ( j < matvar->dims[1] )
printf("...");
printf("\n");
}
if ( i < matvar->dims[0] )
printf(".\n.\n.\n");
} else {
char *data = matvar->data;
for ( i = 0; i < matvar->dims[0] && i < max_rows; i++ ) {
for ( j = 0; j < matvar->dims[1] && j < max_cols; j++ ) {
size_t idx = matvar->dims[0]*j+i;
Mat_PrintNumber(matvar->data_type,
data+idx*stride);
printf(" ");
}
if ( j < matvar->dims[1] )
printf("...");
printf("\n");
}
if ( i < matvar->dims[0] )
printf(".\n.\n.\n");
}
break;
}
case MAT_C_CHAR:
{
char *data = matvar->data;
if ( !printdata )
break;
for ( i = 0; i < matvar->dims[0]; i++ ) {
j = 0;
for ( j = 0; j < matvar->dims[1]; j++ )
printf("%c",data[j*matvar->dims[0]+i]);
printf("\n");
}
break;
}
case MAT_C_SPARSE:
{
mat_sparse_t *sparse;
size_t stride = Mat_SizeOf(matvar->data_type);
#if !defined(EXTENDED_SPARSE)
if ( MAT_T_DOUBLE != matvar->data_type )
break;
#endif
sparse = matvar->data;
if ( matvar->isComplex ) {
mat_complex_split_t *complex_data = sparse->data;
char *re,*im;
re = complex_data->Re;
im = complex_data->Im;
for ( i = 0; i < sparse->njc-1; i++ ) {
for (j = sparse->jc[i];
j<sparse->jc[i+1] && j<sparse->ndata;j++ ) {
printf(" (%d,%d) ",sparse->ir[j]+1,i+1);
Mat_PrintNumber(matvar->data_type,re+j*stride);
printf(" + ");
Mat_PrintNumber(matvar->data_type,im+j*stride);
printf("i\n");
}
}
} else {
char *data;
data = sparse->data;
for ( i = 0; i < sparse->njc-1; i++ ) {
for (j = sparse->jc[i];
j<sparse->jc[i+1] && j<sparse->ndata;j++ ){
printf(" (%d,%d) ",sparse->ir[j]+1,i+1);
Mat_PrintNumber(matvar->data_type,data+j*stride);
printf("\n");
}
}
}
break;
} /* case MAT_C_SPARSE: */
} /* switch( matvar->class_type ) */
}
printf("}\n");
return;
}
|