File: mat_var_print.c

package info (click to toggle)
libpdl-io-matlab-perl 0.006-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,676 kB
  • sloc: ansic: 19,039; sh: 10,875; makefile: 655; perl: 43
file content (212 lines) | stat: -rw-r--r-- 8,403 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/* 
 *  DOES NOT WORK. probably because it is not compiled with the
 *  rest of the libary
 *  A modified version of the library function Mat_VarPrint2
 *  This allows to choose the number of columns and rows to
 *  be printed
 */

/** @brief Prints the variable information
 *
 * Prints to stdout the values of the @ref matvar_t structure
 * @ingroup MAT
 * @param matvar Pointer to the matvar_t structure
 * @param printdata set to 1 if the Variables data should be printed, else 0
 */
void
Mat_VarPrint2( matvar_t *matvar, int printdata, int max_cols, int max_rows )
{
    size_t nmemb;
    int i, j;
    const char *class_type_desc[16] = {"Undefined","Cell Array","Structure",
       "Object","Character Array","Sparse Array","Double Precision Array",
       "Single Precision Array", "8-bit, signed integer array",
       "8-bit, unsigned integer array","16-bit, signed integer array",
       "16-bit, unsigned integer array","32-bit, signed integer array",
       "32-bit, unsigned integer array","64-bit, signed integer array",
       "64-bit, unsigned integer array"};
    const char *data_type_desc[23] = {"Unknown","8-bit, signed integer",
       "8-bit, unsigned integer","16-bit, signed integer",
       "16-bit, unsigned integer","32-bit, signed integer",
       "32-bit, unsigned integer","IEEE 754 single-precision","RESERVED",
       "IEEE 754 double-precision","RESERVED","RESERVED",
       "64-bit, signed integer","64-bit, unsigned integer", "Matlab Array",
       "Compressed Data","Unicode UTF-8 Encoded Character Data",
       "Unicode UTF-16 Encoded Character Data",
       "Unicode UTF-32 Encoded Character Data","","String","Cell Array",
       "Structure"};

    if ( matvar == NULL )
        return;
    if ( matvar->name )
        printf("      Name: %s\n", matvar->name);
    printf("      Rank: %d\n", matvar->rank);
    if ( matvar->rank == 0 )
        return;
    printf("Dimensions: %zu",matvar->dims[0]);
    nmemb = matvar->dims[0];
    for ( i = 1; i < matvar->rank; i++ ) {
        printf(" x %zu",matvar->dims[i]);
        nmemb *= matvar->dims[i];
    }
    printf("\n");
    printf("Class Type: %s",class_type_desc[matvar->class_type]);
    if ( matvar->isComplex )
        printf(" (complex)");
    printf("\n");
    if ( matvar->data_type )
        printf(" Data Type: %s\n", data_type_desc[matvar->data_type]);

    if ( MAT_C_STRUCT == matvar->class_type ) {
        matvar_t **fields = (matvar_t **)matvar->data;
        int nfields = matvar->internal->num_fields;
        if ( nmemb*nfields > 0 ) {
            printf("Fields[%zu] {\n", nfields*nmemb);
            for ( i = 0; i < nfields*nmemb; i++ ) {
                if ( NULL == fields[i] ) {
                    printf("      Name: %s\n      Rank: %d\n",
                           matvar->internal->fieldnames[i%nfields],0);
                } else {
                    Mat_VarPrint(fields[i],printdata);
                }
            }
            printf("}\n");
        } else {
            printf("Fields[%d] {\n", nfields);
            for ( i = 0; i < nfields; i++ )
                printf("      Name: %s\n      Rank: %d\n",
                       matvar->internal->fieldnames[i],0);
            printf("}\n");
        }
        return;
    } else if ( matvar->data == NULL || matvar->data_size < 1 ) {
        return;
    } else if ( MAT_C_CELL == matvar->class_type ) {
        matvar_t **cells = (matvar_t **)matvar->data;
        int ncells = matvar->nbytes / matvar->data_size;
        printf("{\n");
        for ( i = 0; i < ncells; i++ )
            Mat_VarPrint(cells[i],printdata);
        printf("}\n");
        return;
    } else if ( !printdata ) {
        return;
    }
    printf("{\n");

    if ( matvar->rank > 2 ) {
        printf("I can't print more than 2 dimensions\n");
    } else if ( matvar->rank == 1 && matvar->dims[0] > max_rows ) {
      printf("I won't print more than %d elements in a vector\n",max_rows);
    } else if ( matvar->rank==2 ) {
        switch( matvar->class_type ) {
            case MAT_C_DOUBLE:
            case MAT_C_SINGLE:
#ifdef HAVE_MAT_INT64_T
            case MAT_C_INT64:
#endif
#ifdef HAVE_MAT_UINT64_T
            case MAT_C_UINT64:
#endif
            case MAT_C_INT32:
            case MAT_C_UINT32:
            case MAT_C_INT16:
            case MAT_C_UINT16:
            case MAT_C_INT8:
            case MAT_C_UINT8:
            {
                size_t stride = Mat_SizeOf(matvar->data_type);
                if ( matvar->isComplex ) {
                    mat_complex_split_t *complex_data = matvar->data;
                    char *rp = complex_data->Re;
                    char *ip = complex_data->Im;
                   for ( i = 0; i < matvar->dims[0] && i < max_rows; i++ ) {
                        for ( j = 0; j < matvar->dims[1] && j < max_cols; j++ ) {
                            size_t idx = matvar->dims[0]*j+i;
                            Mat_PrintNumber(matvar->data_type,rp+idx*stride);
                            printf(" + ");
                            Mat_PrintNumber(matvar->data_type,ip+idx*stride);
                            printf("i ");
                        }
                        if ( j < matvar->dims[1] )
                            printf("...");
                        printf("\n");
                    }
                    if ( i < matvar->dims[0] )
                        printf(".\n.\n.\n");
               } else {
                   char *data = matvar->data;
                   for ( i = 0; i < matvar->dims[0] && i < max_rows; i++ ) {
                        for ( j = 0; j < matvar->dims[1] && j < max_cols; j++ ) {
                            size_t idx = matvar->dims[0]*j+i;
                            Mat_PrintNumber(matvar->data_type,
                                            data+idx*stride);
                            printf(" ");
                        }
                        if ( j < matvar->dims[1] )
                            printf("...");
                        printf("\n");
                    }
                    if ( i < matvar->dims[0] )
                        printf(".\n.\n.\n");
                }
                break;
            }
            case MAT_C_CHAR:
            {
                char *data = matvar->data;
                if ( !printdata )
                    break;
                for ( i = 0; i < matvar->dims[0]; i++ ) {
                    j = 0;
                    for ( j = 0; j < matvar->dims[1]; j++ )
                        printf("%c",data[j*matvar->dims[0]+i]);
                    printf("\n");
                }
                break;
            }
            case MAT_C_SPARSE:
            {
                mat_sparse_t *sparse;
                size_t stride = Mat_SizeOf(matvar->data_type);
#if !defined(EXTENDED_SPARSE)
                if ( MAT_T_DOUBLE != matvar->data_type )
                    break;
#endif
                sparse = matvar->data;
                if ( matvar->isComplex ) {
                    mat_complex_split_t *complex_data = sparse->data;
                    char *re,*im;
                    re = complex_data->Re;
                    im = complex_data->Im;
                    for ( i = 0; i < sparse->njc-1; i++ ) {
                        for (j = sparse->jc[i];
                             j<sparse->jc[i+1] && j<sparse->ndata;j++ ) {
                            printf("    (%d,%d)  ",sparse->ir[j]+1,i+1);
                            Mat_PrintNumber(matvar->data_type,re+j*stride);
                            printf(" + ");
                            Mat_PrintNumber(matvar->data_type,im+j*stride);
                            printf("i\n");
                        }
                    }
                } else {
                    char *data;
                    data = sparse->data;
                    for ( i = 0; i < sparse->njc-1; i++ ) {
                        for (j = sparse->jc[i];
                             j<sparse->jc[i+1] && j<sparse->ndata;j++ ){
                            printf("    (%d,%d)  ",sparse->ir[j]+1,i+1);
                            Mat_PrintNumber(matvar->data_type,data+j*stride);
                            printf("\n");
                        }
                    }
                }
                break;
            } /* case MAT_C_SPARSE: */
        } /* switch( matvar->class_type ) */
    }

    printf("}\n");

    return;
}